On the Spectral Form Factor for Random Matrices

被引:0
|
作者
Giorgio Cipolloni
László Erdős
Dominik Schröder
机构
[1] Princeton University,Princeton Center for Theoretical Science
[2] IST Austria,Institute for Theoretical Studies
[3] ETH Zurich,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the physics literature the spectral form factor (SFF), the squared Fourier transform of the empirical eigenvalue density, is the most common tool to test universality for disordered quantum systems, yet previous mathematical results have been restricted only to two exactly solvable models (Forrester in J Stat Phys 183:33, 2021. https://doi.org/10.1007/s10955-021-02767-5, Commun Math Phys 387:215–235, 2021. https://doi.org/10.1007/s00220-021-04193-w). We rigorously prove the physics prediction on SFF up to an intermediate time scale for a large class of random matrices using a robust method, the multi-resolvent local laws. Beyond Wigner matrices we also consider the monoparametric ensemble and prove that universality of SFF can already be triggered by a single random parameter, supplementing the recently proven Wigner–Dyson universality (Cipolloni et al. in Probab Theory Relat Fields, 2021. https://doi.org/10.1007/s00440-022-01156-7) to larger spectral scales. Remarkably, extensive numerics indicates that our formulas correctly predict the SFF in the entire slope-dip-ramp regime, as customarily called in physics.
引用
收藏
页码:1665 / 1700
页数:35
相关论文
共 50 条
  • [21] Krylov complexity and spectral form factor for noisy random matrix models
    Arpan Bhattacharyya
    S. Shajidul Haque
    Ghadir Jafari
    Jeff Murugan
    Dimakatso Rapotu
    Journal of High Energy Physics, 2023
  • [22] On the spectral distribution of Gaussian random matrices
    Delyon B.
    Yao J.
    Acta Mathematicae Applicatae Sinica, 2006, 22 (2) : 297 - 312
  • [23] Spectral Analysis of Random Sparse Matrices
    Ando, Tomonori
    Kabashima, Yoshiyuki
    Takahashi, Hisanao
    Watanabe, Osamu
    Yamamoto, Masaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (06) : 1247 - 1256
  • [24] On the Spectral Distribution of Gaussian Random Matrices
    B.Delyon J.Yao IRMAR
    Acta Mathematicae Applicatae Sinica(English Series), 2006, (02) : 297 - 312
  • [25] Spectral Measures of Spiked Random Matrices
    Noiry, Nathan
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (02) : 923 - 952
  • [26] ON THE SPECTRAL NORM OF GAUSSIAN RANDOM MATRICES
    van Handel, Ramon
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) : 8161 - 8178
  • [27] Spectral radii of sparse random matrices
    Benaych-Georges, Florent
    Bordenave, Charles
    Knowles, Antti
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 2141 - 2161
  • [28] Spectral Measures of Spiked Random Matrices
    Nathan Noiry
    Journal of Theoretical Probability, 2021, 34 : 923 - 952
  • [29] Hydrodynamical spectral evolution for random matrices
    Forrester, Peter J.
    Grela, Jacek
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [30] Spectral measures of powers of random matrices
    Meckes, Elizabeth S.
    Meckes, Mark W.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 13