Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms

被引:834
作者
Aidelsburger, M. [1 ,2 ]
Lohse, M. [1 ,2 ]
Schweizer, C. [1 ,2 ]
Atala, M. [1 ,2 ]
Barreiro, J. T. [1 ,2 ]
Nascimbene, S. [3 ]
Cooper, N. R. [4 ]
Bloch, I. [1 ,2 ]
Goldman, N. [3 ,5 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] UPMC, CNRS, ENS, Coll France, F-75005 Paris, France
[4] Cavendish Lab, TCM Grp, Cambridge CB3 OHE, England
[5] ULB, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
基金
英国工程与自然科学研究理事会;
关键词
MAGNETIC-FIELDS; OPTICAL LATTICES; SUPERLATTICES; ELECTRONS; PHASE;
D O I
10.1038/NPHYS3171
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Sixty years ago, Karplus and Luttinger pointed out that quantum particles moving on a lattice could acquire an anomalous transverse velocity in response to a force, providing an explanation for the unusual Hall effect in ferromagnetic metals(1). A striking manifestation of this transverse transport was then revealed in the quantum Hall effect(2) where the plateaux depicted by the Hall conductivity were attributed to a topological invariant characterizing the Bloch bands: the Chern number(3). Until now, topological transport associated with non-zero Chern numbers has only been observed in electronic systems(2,4,5). Here we use the transverse deflection of an atomic cloud in response to an optical gradient to measure the Chern number of artificially generated Hofstadter bands(6). These topological bands are very flat and thus constitute good candidates for the realization of fractional Chern insulators(7). Combining these deflection measurements with the determination of the band populations, we obtain an experimental value for the Chern number of the lowest band v(exp) = 0.99(5). This first Chern-number measurement in a non-electronic system is facilitated by an all-optical artificial gauge field scheme, generating uniform flux in optical superlattices.
引用
收藏
页码:162 / 166
页数:5
相关论文
共 34 条
[1]   Interferometric Approach to Measuring Band Topology in 2D Optical Lattices [J].
Abanin, Dmitry A. ;
Kitagawa, Takuya ;
Bloch, Immanuel ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2013, 110 (16)
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[5]  
AZBEL MY, 1964, SOV PHYS JETP-USSR, V19, P634
[6]   Dynamic optical superlattices with topological bands [J].
Baur, Stefan K. ;
Schleier-Smith, Monika H. ;
Cooper, Nigel R. .
PHYSICAL REVIEW A, 2014, 89 (05)
[7]   Synthetic Gauge Fields for Vibrational Excitations of Trapped Ions [J].
Bermudez, Alejandro ;
Schaetz, Tobias ;
Porras, Diego .
PHYSICAL REVIEW LETTERS, 2011, 107 (15)
[8]  
Bukov M., 2014, PREPRINT
[9]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[10]   Extracting the Chern Number from the Dynamics of a Fermi Gas: Implementing a Quantum Hall Bar for Cold Atoms [J].
Dauphin, Alexandre ;
Goldman, Nathan .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)