On the connection between certain inequalities of the Kolmogorov type for periodic and nonperiodic functions

被引:0
作者
V. F. Babenko
S. A. Selivanova
机构
[1] Dnepropetrovsk University,
关键词
Periodic Function; Periodic Case; Exact Constant; Sequential Derivative; KOLMOGOROV Type;
D O I
10.1007/BF02513470
中图分类号
学科分类号
摘要
We obtain nonperiodic analogs of the known inequalities that estimateLp-norms of intermediate derivatives of a periodic function in terms of itsL∞-norms and higher derivative.
引用
收藏
页码:161 / 171
页数:10
相关论文
共 13 条
  • [1] Hadamard J.(1914)Sur le module maximum d’une fonction et de ses dërivëes C. R. Sëances Soc. Math. 41 68-72
  • [2] Bosse Yu. G.(1937)On inequalities between derivatives Sb. Rabot Stud. Nauch. Kruzhkov Most Univ. 1 17-27
  • [3] Shilov G. E.(1939)On inequalities between upper bounds of sequential derivatives of an arbitrary function on the infinite interval Uch. Zap. Mosk. Univ., Matematika 30 3-16
  • [4] Kolmogorov A. N.(1976)Inequalities for upper bounds of functional Anal. Math. 2 11-40
  • [5] Ligun A. A.(1995)Best approximation of unbounded operators by bounded operators Izv. Vuzov. Matematika 11 44-66
  • [6] Arestov V. V.(1925)Zur Theorie der fastperiodischen Funktionen, I Teil: Eine Verallgemeinerung der Theorie der Fourierreihen Acta Math. 45 29-127
  • [7] Gabushin V. N.(1926)Integralgleichungen und fastperiodische Funktionen Math. Ann. 97 338-356
  • [8] Bohr H.(1926)On generalized almost periodic functions Proc. London Math. Soc. 25 495-512
  • [9] Weyl H.(1970)Best approximation of functionals on some sets Mat. Zametki 8 551-562
  • [10] Besicovitch A.(1957)Functions of exponential type Ann. Math. 65 582-592