Lacunary Recurrence Relations with Gaps of Length 8 for the Bernoulli and Euler Polynomials

被引:0
作者
Mirzoev, K. A. [1 ,2 ]
Safonova, T. A. [3 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
[3] Northern Arctic Fed Univ, Arkhangelsk 163002, Russia
基金
俄罗斯科学基金会;
关键词
Bernoulli polynomial; Bernoulli number; Euler polynomial; Euler number; lacunary recurrence relation;
D O I
10.1134/S0001434624010279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:279 / 284
页数:6
相关论文
共 11 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS F
[2]  
Hardy G. H., 1927, Collected Papers of Srinivasa Ramanujan
[3]   APPLICATIONS OF A RECURRENCE FOR THE BERNOULLI NUMBERS [J].
HOWARD, FT .
JOURNAL OF NUMBER THEORY, 1995, 52 (01) :157-172
[4]   Lacunary recurrence formulas for the numbers of Bernoulli and Euler [J].
Lehmer, DH .
ANNALS OF MATHEMATICS, 1935, 36 :637-649
[5]   ON LACUNARY RECURRENCES WITH GAPS OF LENGTH FOUR AND EIGHT FOR THE BERNOULLI NUMBERS [J].
Merca, Mircea .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) :491-499
[6]  
Mirzoev K. A., 2019, Trans. Moscow Math. Soc, V80, P133, DOI [10.1090/mosc/294, DOI 10.1090/MOSC/294]
[7]  
Mirzoev K. A., 2023, J. Math. Sci, V270, P600, DOI [10.1007/s10958-023-06371-8, DOI 10.1007/S10958-023-06371-8]
[8]  
Olver F.W., 2010, NIST Handbook of Mathematical Functions
[9]  
Ramanujan S., 1911, J. Indian Math. Soc, V3, P219
[10]  
Wagstaff Jr S., 1981, J. Indian Math. Soc, V45, P49