Estimates for harmonic reproducing kernel and Bergman type operators on mixed norm and Besov spaces in the real ball

被引:0
作者
Karen Avetisyan
机构
[1] Yerevan State University,Faculty of Mathematics and Mechanics
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Poisson–Bergman kernel; Mixed norm space; Besov space; Bergman operator; Fractional derivative; Non-tangential approach region; 31B05; 31B10; 46E15; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies families of two-parameter Bergman type operators Tβ,λ,Sβ,λ,Φβ,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,\lambda }, S_{\beta ,\lambda }, \Phi _{\beta ,\delta }$$\end{document} in mixed norm and Besov spaces on the unit ball of Rn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n.$$\end{document} Motivated by a series of papers by Choe et al., we extend estimation theorems for harmonic reproducing kernels. This enables us to obtain boundedness of operators Tβ,λ,Sβ,λ,Φβ,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,\lambda }, S_{\beta ,\lambda }, \Phi _{\beta ,\delta }$$\end{document} on mixed norm and Besov spaces for appropriate parameters. A necessary and sufficient condition is found for Tβ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,\lambda }$$\end{document} and Sβ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\beta ,\lambda }$$\end{document} to be bounded on mixed norm spaces L(p,q,α).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(p,q,\alpha ).$$\end{document} For non-positive α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,$$\end{document} Bergman projection Tβ,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,0}$$\end{document} continuously maps mixed norm space L(p,q,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(p,q,\alpha )$$\end{document} onto corresponding Besov space. Furthermore, a new operator Φβ,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\beta ,\delta }$$\end{document} of Bergman type is found that projects Besov space of smooth functions onto its harmonic subspace.
引用
收藏
相关论文
共 54 条
[31]  
Hardy GH(2005)Decompositions of Sci. China Ser. A Math. 48 145-276
[32]  
Littlewood JE(1997) and Hardy spaces of polyharmonic functions Chin. Ann. Math. Ser. B 18 265-228
[33]  
Jevtić M(2008)Harmonic Bergman spaces with small exponents in the unit ball J. Comput. Anal. Appl. 10 205-undefined
[34]  
Jevtić M(undefined)Weighted harmonic Bloch spaces and Gleason’s problem undefined undefined undefined-undefined
[35]  
Pavlović M(undefined)Boundary behavior of Gleason’s problem in hyperbolic harmonic Bergman spaces undefined undefined undefined-undefined
[36]  
Jevtić M(undefined)Bergman type operator on mixed norm spaces with applications undefined undefined undefined-undefined
[37]  
Pavlović M(undefined)On harmonic function spaces II undefined undefined undefined-undefined
[38]  
Li S(undefined)undefined undefined undefined undefined-undefined
[39]  
Ligocka E(undefined)undefined undefined undefined undefined-undefined
[40]  
Ligocka E(undefined)undefined undefined undefined undefined-undefined