Estimates for harmonic reproducing kernel and Bergman type operators on mixed norm and Besov spaces in the real ball

被引:0
作者
Karen Avetisyan
机构
[1] Yerevan State University,Faculty of Mathematics and Mechanics
来源
Annals of Functional Analysis | 2023年 / 14卷
关键词
Poisson–Bergman kernel; Mixed norm space; Besov space; Bergman operator; Fractional derivative; Non-tangential approach region; 31B05; 31B10; 46E15; 47B32;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies families of two-parameter Bergman type operators Tβ,λ,Sβ,λ,Φβ,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,\lambda }, S_{\beta ,\lambda }, \Phi _{\beta ,\delta }$$\end{document} in mixed norm and Besov spaces on the unit ball of Rn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n.$$\end{document} Motivated by a series of papers by Choe et al., we extend estimation theorems for harmonic reproducing kernels. This enables us to obtain boundedness of operators Tβ,λ,Sβ,λ,Φβ,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,\lambda }, S_{\beta ,\lambda }, \Phi _{\beta ,\delta }$$\end{document} on mixed norm and Besov spaces for appropriate parameters. A necessary and sufficient condition is found for Tβ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,\lambda }$$\end{document} and Sβ,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\beta ,\lambda }$$\end{document} to be bounded on mixed norm spaces L(p,q,α).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(p,q,\alpha ).$$\end{document} For non-positive α,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,$$\end{document} Bergman projection Tβ,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\beta ,0}$$\end{document} continuously maps mixed norm space L(p,q,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(p,q,\alpha )$$\end{document} onto corresponding Besov space. Furthermore, a new operator Φβ,δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _{\beta ,\delta }$$\end{document} of Bergman type is found that projects Besov space of smooth functions onto its harmonic subspace.
引用
收藏
相关论文
共 54 条
[1]  
Avetisyan K(2004)Continuous inclusions and Bergman type operators in J. Math. Anal. Appl. 291 727-740
[2]  
Avetisyan K(2008)-harmonic mixed norm spaces on the polydisc Potential Anal. 29 49-63
[3]  
Avetisyan KL(2019)Weighted integrals and Bloch spaces of Lobachevskii J. Math. 40 1025-1033
[4]  
Avetisyan K(2021)-harmonic functions on the polydisc J. Contemp. Math. Anal. 56 57-67
[5]  
Avetisyan K(2012)Poisson–Bergman type operators on Lipschitz and mixed norm spaces in the real ball J. Contemp. Math. Anal. 47 209-220
[6]  
Tonoyan Y(2015)Fractional integration in weighted Lebesgue spaces J. Contemp. Math. Anal. 50 236-245
[7]  
Avetisyan K(1961)Continuous embeddings in harmonic mixed norm spaces on the unit ball in Duke Math. J. 28 301-324
[8]  
Tonoyan Y(2008)On the fractional integro-differentiation operator in Stud. Math. 189 65-90
[9]  
Benedek A(2007)The spaces Nagoya Math. J. 185 31-62
[10]  
Panzone R(2010) with mixed norm Tohoku Math. J. 62 357-374