Weaving K-Frames in Hilbert Spaces

被引:0
|
作者
Lalit K. Deepshikha
机构
[1] University of Delhi,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Frames; -frames; weaving frames; local atoms; perturbation; 42C15; 42C30; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
Gǎvruta introduced K-frames for Hilbert spaces to study atomic systems with respect to a bounded linear operator. There are many differences between K-frames and standard frames, so we study weaving properties of K-frames. Two frames {ϕi}i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\phi _{i}\}_{i \in I}$$\end{document} and {ψi}i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\psi _{i}\}_{i \in I}$$\end{document} for a separable Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} are woven if there are positive constants A≤B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \le B$$\end{document} such that for every subset σ⊂I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \subset I$$\end{document}, the family {ϕi}i∈σ∪{ψi}i∈σc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\phi _{i}\}_{i \in \sigma } \cup \{\psi _{i}\}_{i \in \sigma ^{c}}$$\end{document} is a frame for H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} with frame bounds A, B. In this paper, we present necessary and sufficient conditions for weaving K-frames in Hilbert spaces. It is shown that woven K-frames and weakly woven K-frames are equivalent. Finally, sufficient conditions for Paley–Wiener type perturbation of weaving K-frames are given.
引用
收藏
相关论文
共 50 条
  • [1] Weaving K-Frames in Hilbert Spaces
    Deepshikha
    Vashisht, Lalit K.
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [2] WEAVING CONTINUOUS K-FRAMES IN HILBERT SPACES
    Rahimlou, GH.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2022, 11 (02): : 91 - 105
  • [3] Some New Results of Weaving K-Frames in Hilbert Spaces
    Xiang, Zhong-Qi
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (04) : 409 - 429
  • [4] Tight K-frames and weaving of K-frames
    Xiangchun Xiao
    Kai Yan
    Guoping Zhao
    Yucan Zhu
    Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [5] INVARIANCE OF K-FRAMES IN HILBERT SPACES
    Li Xujin
    Leng Jinsong
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [6] On the Sum of K-Frames in Hilbert Spaces
    Miao He
    Jinsong Leng
    Jiali Yu
    Yuxiang Xu
    Mediterranean Journal of Mathematics, 2020, 17
  • [7] On the Sum of K-Frames in Hilbert Spaces
    He, Miao
    Leng, Jinsong
    Yu, Jiali
    Xu, Yuxiang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [8] Tight K-frames and weaving of K-frames
    Xiao, Xiangchun
    Yan, Kai
    Zhao, Guoping
    Zhu, Yucan
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (01)
  • [9] Continuous k-Frames and their Dual in Hilbert Spaces
    Rahimlou, Gholamreza
    Ahmadi, Reza
    Jafarizadeh, Mohammad Ali
    Nami, Susan
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (03): : 145 - 160
  • [10] Some Properties of K-Frames in Hilbert Spaces
    Xiao, Xiangchun
    Zhu, Yucan
    Gavruta, Laura
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1243 - 1255