Remote epitaxy through graphene enables two-dimensional material-based layer transfer

被引:0
作者
Yunjo Kim
Samuel S. Cruz
Kyusang Lee
Babatunde O. Alawode
Chanyeol Choi
Yi Song
Jared M. Johnson
Christopher Heidelberger
Wei Kong
Shinhyun Choi
Kuan Qiao
Ibraheem Almansouri
Eugene A. Fitzgerald
Jing Kong
Alexie M. Kolpak
Jinwoo Hwang
Jeehwan Kim
机构
[1] Massachusetts Institute of Technology,Department of Mechanical Engineering
[2] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
[3] Ohio State University,Department of Materials Science and Engineering
[4] Massachusetts Institute of Technology,Department of Materials Science and Engineering
[5] Masdar Institute of Science and Technology,Department of Electrical Engineering and Computer Science
[6] Research Laboratory of Electronics,undefined
[7] Massachusetts Institute of Technology,undefined
来源
Nature | 2017年 / 544卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Conventional epitaxy is of limited application, but by placing a monolayer of graphene between the substrate and the so-called epilayer grown on top, its scope can be substantially extended.
引用
收藏
页码:340 / 343
页数:3
相关论文
共 50 条
[11]   Two-Dimensional Material-Based Nanofluidic Devices and Their Applications [J].
Cui, Yangjun ;
Gao, Long ;
Ying, Cuifeng ;
Tian, Jianguo ;
Liu, Zhibo .
ACS NANO, 2025, 19 (02) :1911-1943
[12]   Two-dimensional Layered Material-Based Nonlinear Optical Upconverters [J].
Raghunathan, Varun ;
Biswas, Rabindra ;
Manattayil, Jyothsna Konkada .
2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024, 2024,
[13]   Plasmonically enabled two-dimensional material-based optoelectronic devices [J].
Wang, Hao ;
Li, Shasha ;
Ai, Ruoqi ;
Huang, He ;
Shao, Lei ;
Wang, Jianfang .
NANOSCALE, 2020, 12 (15) :8095-8108
[14]   Two-dimensional material-based memristive devices for alternative computing [J].
Panisilvam, Jey ;
Lee, Ha Young ;
Byun, Sujeong ;
Fan, Daniel ;
Kim, Sejeong .
NANO CONVERGENCE, 2024, 11 (01)
[15]   Plasmonically enabled two-dimensional material-based optoelectronic devices [J].
Wang, Hao ;
Li, Shasha ;
Ai, Ruoqi ;
Huang, He ;
Shao, Lei ;
Wang, Jianfang .
Nanoscale, 2020, 12 (15) :8095-8108
[16]   Two-dimensional material-assisted remote epitaxy and van der Waals epitaxy: a review [J].
Zhetong Liu ;
Bingyao Liu ;
Zhaolong Chen ;
Shenyuan Yang ;
Zhiqiang Liu ;
Tongbo Wei ;
Peng Gao ;
Zhongfan Liu .
National Science Open, 2023, 2 (04) :54-70
[17]   Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth [J].
Ryu, Huije ;
Park, Hyunik ;
Kim, Joung-Hun ;
Ren, Fan ;
Kim, Jihyun ;
Lee, Gwan-Hyoung ;
Pearton, Stephen J. .
APPLIED PHYSICS REVIEWS, 2022, 9 (03)
[18]   Radiation tolerance of two-dimensional material-based devices for space applications [J].
Vogl, Tobias ;
Sripathy, Kabilan ;
Sharma, Ankur ;
Reddy, Prithvi ;
Sullivan, James ;
Machacek, Joshua R. ;
Zhang, Linglong ;
Karouta, Fouad ;
Buchler, Ben C. ;
Doherty, Marcus W. ;
Lu, Yuerui ;
Lam, Ping Koy .
NATURE COMMUNICATIONS, 2019, 10 (1)
[19]   Recent advances on two-dimensional material-based nanosystems for gene delivery [J].
Wang, Mengjie ;
Li, Dan ;
Zhu, Jiangtao ;
Liu, Junyu ;
Yin, Yandong ;
Su, Yang ;
Jin, Chanyuan ;
Li, Juan ;
Zhang, Can Yang .
APL MATERIALS, 2024, 12 (05)
[20]   Radiation tolerance of two-dimensional material-based devices for space applications [J].
Tobias Vogl ;
Kabilan Sripathy ;
Ankur Sharma ;
Prithvi Reddy ;
James Sullivan ;
Joshua R. Machacek ;
Linglong Zhang ;
Fouad Karouta ;
Ben C. Buchler ;
Marcus W. Doherty ;
Yuerui Lu ;
Ping Koy Lam .
Nature Communications, 10