Classical Euclidean Wormhole Solution and Wave Function for a Nonlinear Scalar Field

被引:0
作者
H. Q. Lu
L. M. Shen
P. Ji
G. F. Ji
N. J. Sun
机构
[1] The Shanghai University,Department of Physics
来源
International Journal of Theoretical Physics | 2003年 / 42卷
关键词
Euclidean wormhole; Born—Infeld field; wormhole wave function; Wheeler—Dewitt equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the classical Euclidean wormhole solution of the Born—Infeld scalar field. The corresponding classical Euclidean wormhole solution can be obtained analytically for both very small and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document}. At the extreme limit of small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document} the wormhole solution has the same format as one obtained by Giddings and Strominger (Nuclear Physics B306, 890, 1988). At the extreme limit of large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document} the wormhole solution is a new one. The wormhole wave functions can also be obtained for both very small and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot \varphi$$ \end{document}. These wormhole wave functions are regarded as solutions of quantum-mechanical Wheeler—Dewitt equation with certain boundary conditions.
引用
收藏
页码:837 / 844
页数:7
相关论文
共 25 条
[1]  
Boillat G.(1999)undefined Journal of Mathematical Physics 40 1-undefined
[2]  
Strumia A.(1934)undefined Proceedings of the Royal Society Series A 144 425-undefined
[3]  
Born M.(1988)undefined Nuclear Physics B 310 643-undefined
[4]  
Infeld Z.(1992)undefined Classical and Quantum Gravity 9 2353-undefined
[5]  
Coleman S.(1997)undefined Physical Review D: Particles and Fields 55 6606-undefined
[6]  
Coule D. H.(1995)undefined Journal of Mathematical Physics 36 2988-undefined
[7]  
Coule D. H.(1998)undefined Classical and Quantum Gravity 15 L35-undefined
[8]  
de Oliveira H. P.(1998)undefined Physical Review D: Particles and Fields 58 124023-undefined
[9]  
Deser S.(1988)undefined Nucler Physics B 306 890-undefined
[10]  
Gibbons G. W.(1990)undefined Modern Physics Letters A 5 1307-undefined