SU(N) q-Toda equations from mass deformed ABJM theory

被引:0
作者
Tomoki Nosaka
机构
[1] International School for Advanced Studies (SISSA),
[2] INFN Sezione di Trieste,undefined
来源
Journal of High Energy Physics | / 2021卷
关键词
Chern-Simons Theories; M-Theory; Matrix Models; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the partition functions of the U(N)k × U(N + M)−k ABJM theory satisfy a set of bilinear relations, which, written in the grand partition function, was recently found to be the q-Painlevé III3 equation. In this paper we have suggested that a similar bilinear relation holds for the ABJM theory with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 6 preserving mass deformation for an arbitrary complex value of mass parameter, to which we have provided several non-trivial checks by using the exact values of the partition function for various N, k, M and the mass parameter. For particular choices of the mass parameters labeled by integers ν, a as m1 = m2 = −πi(ν − 2a)/ν, the bilinear relation corresponds to the q-deformation of the affine SU(ν) Toda equation in τ-form.
引用
收藏
相关论文
共 154 条
[1]  
Klebanov IR(1996) = 4 Nucl. Phys. B 475 164-undefined
[2]  
Tseytlin AA(2004) = 6 JHEP 11 078-undefined
[3]  
Schwarz JH(2008) 2 JHEP 07 091-undefined
[4]  
Hosomichi K(2008) = 6 JHEP 10 091-undefined
[5]  
Lee K-M(2011) = 2 Phys. Rev. D 83 046001-undefined
[6]  
Lee S(2010) 2 JHEP 03 089-undefined
[7]  
Lee S(2011) = 5 Commun. Math. Phys. 306 511-undefined
[8]  
Park J(2010) 6 Nucl. Phys. B 834 50-undefined
[9]  
Aharony O(2010)2 JHEP 02 058-undefined
[10]  
Bergman O(2010)2 JHEP 06 011-undefined