The Lorentz-invariant deformation of the Whitham system for the nonlinear Klein-Gordon equation

被引:0
作者
A. Ya. Maltsev
机构
[1] L. D. Landau Institute for Theoretical Physics,
来源
Functional Analysis and Its Applications | 2008年 / 42卷
关键词
asymptotic method; slow modulation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a deformation of the Whitham system for the nonlinear Klein-Gordon equation. This deformation has a Lorentz-invariant form. Using the Lagrangian formalism of the original system, we obtain the first nontrivial correction to the Whitham system in the Lorentz-invariant approach.
引用
收藏
页码:103 / 115
页数:12
相关论文
共 47 条
[1]  
Whitham G.(1965)A general approach to linear and non-linear dispersive waves using a Lagrangian J. Fluid Mech. 22 273-283
[2]  
Whitham G.(1965)Non-linear dispersive waves Proc. Roy. Soc. London Ser. A 283 238-261
[3]  
Luke J. C.(1966)A perturbation method for nonlinear dispersive wave problems Proc. Roy. Soc. London Ser. A 292 403-412
[4]  
Ablowitz M. J.(1970)The evolution of multi-phase modes for nonlinear dispersive waves Stud. Appl. Math. 49 225-238
[5]  
Benney D. J.(1971)Applications of slowly varying nonlinear dispersive wave theories Stud. Appl. Math. 50 329-344
[6]  
Ablowitz M. J.(1972)Approximate methods for obtaining multi-phase modes in nonlinear dispersive wave problems Stud. Appl. Math. 51 17-55
[7]  
Ablowitz M. J.(1973)Group velocity and non-linear dispersive wave propagation Proc. Roy. Soc. London Ser. A 332 199-221
[8]  
Hayes W. D.(1973)Decay of initial discontinuity in the Korteweg-de Vries equation Pis’ma v ZhETF 17 268-271
[9]  
Gurevich A. V.(1973)Nonstationary structure of collisionless shock waves ZhETF 65 590-604
[10]  
Pitaevskii L. P.(1980)Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation Comm. Pure Appl. Math. 33 739-784