Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements

被引:0
作者
Jia-Dong Shi
Shuai Xu
Wen-Chao Ma
Xue-Ke Song
Liu Ye
机构
[1] Anhui University,School of Physics and Material Science
[2] Beijing Normal University,Department of Physics, Applied Optics Beijing Area Major Laboratory
来源
Quantum Information Processing | 2015年 / 14卷
关键词
Entanglement purification; Decoherence; Weak measurements;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a feasible scheme for purifying two-qubit entanglement in the presence of decoherence by employing weak measurements. As long as the entanglement parameter α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and the measurement strength p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} satisfy a certain condition, we can always achieve the purification without reference to the initial state. Furthermore, an arbitrary initial state can be directly purified into the maximally entangled state by setting measurement strength p=1-α1-α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1-\frac{\left| \alpha \right| }{\sqrt{1-\left| \alpha \right| ^{2}}}$$\end{document}. The success probability of our scheme not only depends on measurement strength, but also closely links to the initial state.
引用
收藏
页码:1387 / 1397
页数:10
相关论文
共 102 条
  • [11] Popescu S(2007)Non-Markovian Effects on the Dynamics of Entanglement Phys. Rev. Lett. 99 160502-undefined
  • [12] Peres A(2014)Multipartite concurrence for Quantum Inf. Process. 13 1045-undefined
  • [13] Terno DR(2014) states under decoherence Phys. Rev. A 90 012314-undefined
  • [14] Hu TT(2003)Robustness of hashing protocols for entanglement purification Nature 423 417-undefined
  • [15] Xue K(2014)Experimental entanglement purification of arbitrary unknown states Quantum Inf. Process 13 1397-undefined
  • [16] Sun CF(1993)Efficient entanglement purification via quantum communication bus Phys. Rev. Lett. 71 4287-undefined
  • [17] Harrow A(1999)“Event-ready-detectors” Bell experiment via entanglement swapping Phys. Rev. A 60 194-undefined
  • [18] Hayden P(1998)Purification via entanglement swapping and conserved entanglement Phys. Rev. Lett. 81 3279-undefined
  • [19] Leung D(2009)Purifying noisy entanglement requires collective measurements Opt. Express 17 11978-undefined
  • [20] Huang P(2012)Reversing the weak quantum measurement for a photonic qubit Nat. Phys. 8 117-undefined