Controlled approximation of the value function in stochastic dynamic programming for multi-reservoir systems

被引:5
作者
Zéphyr L. [1 ]
Lang P. [1 ]
Lamond B.F. [1 ]
机构
[1] Operations and Decision Systems Departement, Université Laval, Pavillon Palasis-Prince, 2325, Rue de la Terrasse, Quebec, G1V 0A6, QC
关键词
Regular grids; Reservoir networks; Separable grids; Simplicial decomposition; Stochastic dynamic programming; Value function approximation;
D O I
10.1007/s10287-015-0242-1
中图分类号
学科分类号
摘要
We present a new approach for adaptive approximation of the value function in stochastic dynamic programming. Under convexity assumptions, our method is based on a simplicial partition of the state space. Bounds on the value function provide guidance as to where refinement should be done, if at all. Thus, the method allows for a trade-off between solution time and accuracy. The proposed scheme is experimented in the particular context of hydroelectric production across multiple reservoirs. © 2015, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:539 / 557
页数:18
相关论文
共 20 条
  • [1] Barros M.T., Tsai F.T., Sl Y., Lopes J.E., Yeh W.W., Optimization of large-scale hydropower system operations, J Water Res Plan Manag, 129, 3, pp. 178-188, (2003)
  • [2] Castelletti A., de Rigo D., Rizzoli A.E., Soncini-Sessa R., Weber E., Neuro-dynamic programming for designing water reservoir network management policies, Control Eng Pract, 15, 8, pp. 1031-1038, (2007)
  • [3] Chandramouli V., Raman H., Multireservoir modeling with dynamic programming and neural networks, J Water Res Plan Manag, 127, 2, pp. 89-98, (2001)
  • [4] Dickinson P.J., On the exhaustivity of simplicial partitioning, J Glob Optim 58.1, pp. 1-15, (2013)
  • [5] Foufoula-Georgiou E., Kitanidis P.K., Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems, Water Resour Res, 24, 8, pp. 1345-1359, (1988)
  • [6] Gal S., The parameter iteration method in dynamic programming, Manag Sci, 35, 6, pp. 675-684, (1989)
  • [7] Hiriart-Urruty J.B., Lemarechal C., Fundamentals of convex analysis, (2001)
  • [8] Kim Y.O., Eum H.I., Lee E.G., Ko I.H., Optimizing operational policies of a korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction, J Water Resour Plan Manag, 133, 1, pp. 4-14, (2007)
  • [9] Krau S., Emiel G., Merleau J., Une méthode d’échantillonnage adaptatif de l’espace des états pour la programmation dynamique appliquée à la gestion de systèmes hydriques. Seminar presentation, CIRRELT, (2014)
  • [10] Lang P., Zephyr L., Lamond B., Computing the expected value function for a multi-reservoir system with highly correlated inflows. In: Guan Y, Liao H (eds) Proceedings of the industrial and systems engineering research conference (ISERC 2014), Montreal, Canada, May 31–June 3, Online:, (2014)