scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning

被引:0
|
作者
Yingxin Lin
Tung-Yu Wu
Sheng Wan
Jean Y. H. Yang
Wing H. Wong
Y. X. Rachel Wang
机构
[1] The University of Sydney,School of Mathematics and Statistics
[2] The University of Sydney,Charles Perkins Centre
[3] Stanford University,Department of Statistics
[4] National Chiao Tung University,Institute of Electronics
[5] Laboratory of Data Discovery for Health Limited,Department of Biomedical Data Science
[6] Science Park,Bio
[7] Stanford University,X Program
[8] Stanford University,undefined
来源
Nature Biotechnology | 2022年 / 40卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell multiomics data continues to grow at an unprecedented pace. Although several methods have demonstrated promising results in integrating several data modalities from the same tissue, the complexity and scale of data compositions present in cell atlases still pose a challenge. Here, we present scJoint, a transfer learning method to integrate atlas-scale, heterogeneous collections of scRNA-seq and scATAC-seq data. scJoint leverages information from annotated scRNA-seq data in a semisupervised framework and uses a neural network to simultaneously train labeled and unlabeled data, allowing label transfer and joint visualization in an integrative framework. Using atlas data as well as multimodal datasets generated with ASAP-seq and CITE-seq, we demonstrate that scJoint is computationally efficient and consistently achieves substantially higher cell-type label accuracy than existing methods while providing meaningful joint visualizations. Thus, scJoint overcomes the heterogeneity of different data modalities to enable a more comprehensive understanding of cellular phenotypes.
引用
收藏
页码:703 / 710
页数:7
相关论文
共 50 条
  • [21] Integrative Single-Cell RNA-Seq, Single Cell ATAC-Seq, and Spatial RNA-Seq Analysis of Heterogeneity in HPV-Related Head and Neck Squamous Cell Carcinoma
    Dalai, P.
    Gensterblum-Miller, E.
    Gu, W.
    Bhangale, A.
    Brummel, C.
    Mills, R.
    Brenner, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 118 (05): : E73 - E74
  • [22] Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads
    De Rop, Florian, V
    Ismail, Joy N.
    Bravo Gonzalez-Blas, Carmen
    Hulselmans, Gert J.
    Flerin, Christopher Campbell
    Janssens, Jasper
    Theunis, Koen
    Christiaens, Valerie M.
    Wouters, Jasper
    Marcassa, Gabriele
    de Wit, Joris
    Poovathingal, Suresh
    Aerts, Stein
    ELIFE, 2022, 11
  • [23] Single-cell ATAC-seq: strength in numbers
    Pott, Sebastian
    Lieb, Jason D.
    GENOME BIOLOGY, 2015, 16
  • [24] Single-cell ATAC-seq: strength in numbers
    Sebastian Pott
    Jason D. Lieb
    Genome Biology, 16
  • [25] Online Single-cell RNA-seq Data Denoising with Transfer Learning
    Kang, Bowei
    Abeysinghe, Eroma
    Agarwal, Divyansh
    Wang, Quanli
    Pamidighantam, Sudhakar
    Huang, Mo
    Zhang, Nancy R.
    Wang, Jingshu
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2020, PEARC 2020, 2020, : 469 - 472
  • [26] Epigenetic and transcriptional profiling of PBMCs in mild and severe alopecia areata using single-cell RNA-Seq and ATAC-Seq
    Gay-Mimbrera, J.
    Juan-Cencerrado, M.
    Rivera-Ruiz, I.
    Gomez-Arias, P. J.
    Andujar-Pulido, E.
    Aguilar-Luque, M.
    Perez-Alegre, M.
    Ruano, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (11) : S360 - S360
  • [27] Matched Single-Cell RNA-seq and Single-Cell ATAC-seq of Male Breast Cancers Nominate Salient Cancer-Specific Enhancers
    Wisniewska, Kamila
    Kim, Hyunsoo
    Regner, Matthew J.
    Spanheimer, Philip
    Franco, Hector L.
    CANCER RESEARCH, 2023, 83 (05)
  • [28] Single cell RNA-seq and single cell ATAC-seq analyses during a treatment for dystrophic epidermolysis bullosa
    Shimbo, T.
    Yamazaki, S.
    Kitayama, T.
    Ouchi, Y.
    Yamamoto, R.
    Takaki, E.
    Kikuchi, Y.
    Bruckner-Tuderman, L.
    Uitto, J.
    Kaneda, Y.
    Tamai, K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S164 - S164
  • [29] Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types
    Samuel S. Kim
    Buu Truong
    Karthik Jagadeesh
    Kushal K. Dey
    Amber Z. Shen
    Soumya Raychaudhuri
    Manolis Kellis
    Alkes L. Price
    Nature Communications, 15
  • [30] Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types
    Kim, Samuel S.
    Truong, Buu
    Jagadeesh, Karthik
    Dey, Kushal K.
    Shen, Amber Z.
    Raychaudhuri, Soumya
    Kellis, Manolis
    Price, Alkes L.
    NATURE COMMUNICATIONS, 2024, 15 (01)