Mechanism of Hardening of Ultrafine-Grained Aluminum after Annealing

被引:6
作者
Gutkin, M. Yu [1 ,2 ,3 ]
Latynina, T. A. [2 ]
Orlova, T. S. [2 ,4 ]
Skiba, N., V [1 ,3 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] ITMO Univ, St Petersburg 197101, Russia
[3] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
[4] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
ultrafine-grained aluminum; hardening by annealing; microplasticity mechanisms; ELECTRICAL-RESISTIVITY; DISLOCATION EMISSION; PLASTIC-DEFORMATION; NANOCRYSTALLINE AL; BOUNDARIES; STABILITY;
D O I
10.1134/S1063783419100160
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A theoretical model is proposed that describes the hardening mechanism of ultrafine-grained aluminum obtained by high pressure torsion after low-temperature annealing. Within this model, the hardening is due to the successive transformation of the grain-boundary dislocation structure. In particular, plastic deformation is occurs through the emission of lattice dislocations from triple junctions of grain boundaries containing pile-ups of grain-boundary dislocations, the subsequent sliding of lattice dislocations in the grain body, and the formation of walls of climbing grain-boundary dislocations along opposite grain boundaries. The energy characteristics and critical stresses for emission of lattice dislocations are calculated. Theoretical dependences of the flow stress on the plastic strain, which demonstrate good qualitative and quantitative agreement with experimental data, are constructed.
引用
收藏
页码:1790 / 1799
页数:10
相关论文
共 39 条
[1]  
Andrievskii R. A., 2012, BASICS NANOSTRUCTURE
[2]  
[Anonymous], 1995, Interfaces in Crystalline Materials
[3]  
[Anonymous], 1972, THEORY DISLOCATIONS
[4]   Severe plastic deformation (SPD) processes for metals [J].
Azushima, A. ;
Kopp, R. ;
Korhonen, A. ;
Yang, D. Y. ;
Micari, F. ;
Lahoti, G. D. ;
Groche, P. ;
Yanagimoto, J. ;
Tsuji, N. ;
Rosochowski, A. ;
Yanagida, A. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (02) :716-735
[5]   Deformation twinning in nanocrystalline aluminum [J].
Chen, MW ;
Ma, E ;
Hemker, KJ ;
Sheng, HW ;
Wang, YM ;
Cheng, XM .
SCIENCE, 2003, 300 (5623) :1275-1277
[6]   Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials [J].
Fedorov, AA ;
Gutkin, MY ;
Ovid'ko, IA .
ACTA MATERIALIA, 2003, 51 (04) :887-898
[7]  
Gutkin M.Y., 2002, J. Metastable Nanocrystalline Mater, V12, P47, DOI [10.4028/www.scientific.net/jmnm.12.47, DOI 10.4028/WWW.SCIENTIFIC.NET/JMNM.12.47]
[8]   Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials [J].
Gutkin, M. Yu ;
Ovid'ko, I. A. ;
Skiba, N. V. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (21) :3921-3925
[9]   Grain boundary sliding and lattice dislocation emission in nanocrystalline materials under plastic deformation [J].
Gutkin, MY ;
Ovid'ko, IA ;
Skiba, NV .
PHYSICS OF THE SOLID STATE, 2005, 47 (09) :1662-1674
[10]   Emission of partial dislocations by grain boundaries in nanocrystalline metals [J].
Gutkin, MY ;
Ovid'ko, IA ;
Skiba, NV .
PHYSICS OF THE SOLID STATE, 2004, 46 (11) :2042-2052