Spherical-separability of Non-Hermitian Hamiltonians and Pseudo- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document} -symmetry

被引:0
作者
Omar Mustafa
S. Habib Mazharimousavi
机构
[1] Eastern Mediterranean University,Department of Physics
关键词
Non-Hermitian Hamiltonians; Spherical-separability; Pseudo- ; -symmetry;
D O I
10.1007/s10773-008-9794-y
中图分类号
学科分类号
摘要
Non-Hermitian but \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}_{\varphi }\mathcal{T}_{\varphi }$\end{document} -symmetrized spherically-separable Dirac and Schrödinger Hamiltonians are considered. It is observed that the descendant Hamiltonians Hr, Hθ, and Hφ play essential roles and offer some “user-feriendly” options as to which one (or ones) of them is (or are) non-Hermitian. Considering a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}_{\varphi }\mathcal{T}_{\varphi }$\end{document} -symmetrized Hφ, we have shown that the conventional Dirac (relativistic) and Schrödinger (non-relativistic) energy eigenvalues are recoverable. We have also witnessed an unavoidable change in the azimuthal part of the general wavefunction. Moreover, setting a possible interaction V(θ)≠0 in the descendant Hamiltonian Hθ would manifest a change in the angular θ-dependent part of the general solution too. Whilst some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}_{\varphi }\mathcal{T}_{\varphi }$\end{document} -symmetrized Hφ Hamiltonians are considered, a recipe to keep the regular magnetic quantum number m, as defined in the regular traditional Hermitian settings, is suggested. Hamiltonians possess properties similar to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document} -symmetric ones (here the non-Hermitian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{P}_{\varphi }\mathcal{T}_{\varphi }$\end{document} -symmetric Hamiltonians) are nicknamed as pseudo- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document} -symmetric.
引用
收藏
页码:183 / 193
页数:10
相关论文
共 50 条