Schwarzian derivative in higher-order Riccati equations

被引:0
作者
Benoy Talukdar
Supriya Chatterjee
Golam Ali Sekh
机构
[1] Visva-Bharati University,Department of Physics
[2] Bidhannagar College,Department of Physics
[3] Kazi Nazrul University,Department of Physics
来源
Pramana | / 97卷
关键词
higher-order Riccati equations; linearised form; Schwarzian derivative; higher-order analogue; 02.30.Jr; 02.30.Hq; 02.70.Wz;
D O I
暂无
中图分类号
学科分类号
摘要
The Sturm–Liouville equation represents the linearised form of the first-order Riccati equation. This provides an evidence for the connection between Schwarzian derivative and this first-order nonlinear differential equation. Similar connection is not obvious for higher-order equations in the Riccati chain because the corresponding linear equations are of order greater than two. With special attention to the second- and third-order Riccati equations we demonstrate that Schwarzian derivative has a natural space in higher Riccati equations. There exist higher-order analogues of the Schwarzian derivative. We demonstrate that equations in the Riccati hierarchy are embedded in these higher-order derivatives.
引用
收藏
相关论文
共 32 条
  • [1] Bera PK(1993)undefined J. Phys. A: Math. Gen. 26 L1073-undefined
  • [2] Nandi TK(2011)undefined J. Nonlinear Math. Phys. 18 29-undefined
  • [3] Talukdar B(1951)undefined Q. J. Appl. Math. 9 225-undefined
  • [4] Cariñena JF(1950)undefined Commun. Pure Appl. Math. 3 201-undefined
  • [5] de Lucas J(1983)undefined J. Math. Phys. 24 1062-undefined
  • [6] Cole JD(2009)undefined J. Phys.: Conf. Ser. 175 012009-undefined
  • [7] Hopf E(2017)undefined J. Differ. Equ. 263 299-undefined
  • [8] Harnad J(2021)undefined Open Commun. Nonlinear Math. Phys. 1 41-undefined
  • [9] Winternitz P(2009)undefined Not. AMS 56 34-undefined
  • [10] Anderson RL(1988)undefined Bull. Am. Math. Soc. 18 159-undefined