Estimates on μ(z)-homeomorphisms of the unit disk

被引:4
作者
Chen Zhiguo
机构
[1] Zhejiang University,Department of Mathematics, XiXi Campus
关键词
Unit Disk; Conformal Mapping; Quasiconformal Mapping; Extremal Length; Degenerate Elliptic Equation;
D O I
10.1007/BF02809907
中图分类号
学科分类号
摘要
In the theory ofK-quasiconformal mappings, Mori's theorem shows thatK-quasiconformal mappings on the unit disk satisfy the Hölder condition, where the coefficient 16 is best possible. In this paper, we prove that self-μ(z)-homeomorphisms on the unit disk have an analogical result to Mori's theorem when the integral mean dilatations are controlled by log function. An unimprovable inequality is obtained.
引用
收藏
页码:347 / 358
页数:11
相关论文
共 14 条
[1]  
Brakalova M.(1998)On solutions of the Beltrami equation Journal d'Analyse Mathématique 76 67-92
[2]  
Jenkins J.(1996)Boundary behavior of the dilatation of Beurling-Ahlfors' extension Journal of Fudan University 35 381-386
[3]  
Chen Z. G.(1996)Boundary correspondence under μ(z)-homeomorphisms The Michigan Mathematical Journal 43 211-220
[4]  
Chen J. C.(1988)Solution de l'éequation de Beltrami avec |μ|∞=1 Annales Academiae Scientiarum Fennicae. Series A. I. Mathematica 13 25-69
[5]  
Chen Z. G.(1995)Generalized Beurling-Ahlfors extension Science in China 25 565-572
[6]  
He C. Q.(1965)Distortion theorem of the module for quasiconformal mappings Acta Mathematica Sinica 15 487-494
[7]  
David G.(1989)A remark on the homeomorphic solution of the Betrami equation Beijing Daxue Xuebao 25 8-17
[8]  
Fang A. N.(1993)Locally quasiconformal mappings and the Dirichlet Problem of degenerate elliptic equations Complex Variables 23 231-247
[9]  
He C. Q.(1965)On the behavior of quasiconformal mappings at a point Transactions of the American Mathematical Society 117 338-351
[10]  
Li Z.(1991)Compactness properties of μ(z)-homeomorphisms Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 16 47-69