An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples

被引:0
|
作者
Anderson Santos Souza
Marcos Almeida Bezerra
Uillian Mozart Ferreira Mata Cerqueira
Caiene Jesus Oliveira Rodrigues
Bianca Cotrim Santos
Cleber Galvão Novaes
Erica Raina Venâncio Almeida
机构
[1] Universidade Federal da Bahia,Instituto Multidisciplinar em Saúde
[2] Universidade Estadual do Sudoeste da Bahia,Departamento de Ciências e Tecnologias
[3] Universidade Federal da Bahia,Instituto de Química
[4] Universidade Federal da Bahia,Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente
来源
关键词
Principal component analysis; Multivariate analysis; Food samples;
D O I
暂无
中图分类号
学科分类号
摘要
Principal component analysis (PCA) is currently one of the most used multivariate data analysis techniques for evaluating information from food analysis. In this review, a brief introduction to the theoretical principles that underlie PCA will be given, in addition to presenting the most commonly used computer programs. An example from the literature was discussed to illustrate the use of this chemometric tool and interpretation of graphs and parameters obtained. A list of recently published articles will also be presented, in order to show the applicability and potential of the technique in the food analysis field.
引用
收藏
页码:1323 / 1336
页数:13
相关论文
共 50 条
  • [1] An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples
    Souza, Anderson Santos
    Bezerra, Marcos Almeida
    Cerqueira, Uillian Mozart Ferreira Mata
    Rodrigues, Caiene Jesus Oliveira
    Santos, Bianca Cotrim
    Novaes, Cleber Galvao
    Almeida, Erica Raina Venancio
    FOOD SCIENCE AND BIOTECHNOLOGY, 2024, 33 (06) : 1323 - 1336
  • [2] An Exploration of the Application of Principal Component Analysis in Big Data Processing
    Li G.
    Qin Y.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [3] Principal Component Analysis: A Natural Approach to Data Exploration
    Gewers, Felipe L.
    Ferreira, Gustavo R.
    De Arruda, Henrique F.
    Silva, Filipi N.
    Comin, Cesar H.
    Amancio, Diego R.
    Costa, Luciano Da F.
    ACM COMPUTING SURVEYS, 2021, 54 (04)
  • [4] A procedure for correlation of chemical and sensory data in drinking water samples by principal component factor analysis
    Meng, AK
    Suffet, IH
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (02) : 337 - 345
  • [5] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [6] Principal component analysis in application to Brillouin microscopy data
    Mahmodi, Hadi
    Poulton, Christopher G.
    Leslie, Mathew N.
    Oldham, Glenn
    Ong, Hui Xin
    Langford, Steven J.
    Kabakova, Irina, V
    JOURNAL OF PHYSICS-PHOTONICS, 2024, 6 (02):
  • [7] Longitudinal Principal Component Analysis With an Application to Marketing Data
    Kinson, Christopher
    Tang, Xiwei
    Zuo, Zhen
    Qu, Annie
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 335 - 350
  • [8] Principal Component Analysis of Complex Data and Application to Climatology
    Camiz, Sergio
    Creta, Silvia
    CLASSIFICATION, (BIG) DATA ANALYSIS AND STATISTICAL LEARNING, 2018, : 77 - 85
  • [9] Component retention in principal component analysis with application to cDNA microarray data
    Cangelosi, Richard
    Goriely, Alain
    BIOLOGY DIRECT, 2007, 2
  • [10] Component retention in principal component analysis with application to cDNA microarray data
    Richard Cangelosi
    Alain Goriely
    Biology Direct, 2