Gauss curvature flow with an obstacle

被引:0
|
作者
Ki-Ahm Lee
Taehun Lee
机构
[1] Seoul National University,Department of Mathematical Sciences
[2] Korea Institute for Advanced Study,School of Mathematics
关键词
53C44; 35R35; 35K96; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the obstacle problem for the Gauss curvature flow with an exponent α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Under the assumption that both the obstacle and the initial hypersurface are strictly convex closed hypersurfaces and that the obstacle is enclosed by the initial hypersurface, uniform estimates are obtained for several curvatures via a penalty method. We also prove that when the hypersurface is two dimensional with 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 1$$\end{document}, the solution of the Gauss curvature flow with an obstacle exists for all time with bounded principal curvatures {λi}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _i\}$$\end{document}, where the upper bound is uniform, and the lower bound depends on the distance from the free boundary. Moreover, we show that there exists a finite time T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_*$$\end{document} after which the solution becomes stationary in the same shape as the obstacle.
引用
收藏
相关论文
共 50 条
  • [41] AN APPLICATION OF DUAL CONVEX BODIES TO THE INVERSE GAUSS CURVATURE FLOW
    Ivaki, Mohammad N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (03) : 1257 - 1271
  • [42] A note on Chow's entropy functional for the Gauss curvature flow
    Guo, Hongxin
    Philipowski, Robert
    Thalmaier, Anton
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (21-22) : 833 - 835
  • [43] UNIQUENESS OF ANCIENT SOLUTIONS TO GAUSS CURVATURE FLOW ASYMPTOTIC TO A CYLINDER
    Choi, Beomjun
    Choi, Kyeongsu
    Daskalopoulos, Panagiota
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 127 (01) : 77 - 104
  • [44] A Gauss Curvature Flow to the Orlicz–Minkowski Problem for Torsional Rigidity
    Jinrong Hu
    Jiaqian Liu
    Di Ma
    The Journal of Geometric Analysis, 2022, 32
  • [45] Simulation of Hyperbolic Mean Curvature Flow with an Obstacle in the Closed Curve
    Kusumasari, Vita
    Purnomo, Muhammad Fauzan Edy
    Chandra, Tjang Daniel
    Oktoviana, Lucky Tri
    Agung, Mohammad
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICOMSE) 2019: STRENGTHENING MATHEMATICS AND SCIENCE EDUCATION RESEARCH FOR THE CHALLENGE OF GLOBAL SOCIETY, 2020, 2215
  • [46] VOLUME PRESERVING GAUSS CURVATURE FLOW OF CONVEX HYPERSURFACES IN THE HYPERBOLIC SPACE
    Wei, Yong
    Yang, Bo
    Zhou, Tailong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (04) : 2821 - 2854
  • [47] A Gauss Curvature Flow to the Orlicz-Minkowski Problem for Torsional Rigidity
    Hu, Jinrong
    Liu, Jiaqian
    Ma, Di
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [48] A two-dimensional random crystalline algorithm for Gauss curvature flow
    Ishii, H
    Mikami, T
    ADVANCES IN APPLIED PROBABILITY, 2002, 34 (03) : 491 - 504
  • [49] Convergence of a three-dimensional crystalline motion to Gauss curvature flow
    Ushijima, TK
    Yagisita, H
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2005, 22 (03) : 443 - 459
  • [50] Connection between translating solutions for a generalized Gauss curvature flow in a cylinder
    Yuan, Lixia
    APPLIED MATHEMATICS LETTERS, 2020, 105 (105)