Gauss curvature flow with an obstacle

被引:0
|
作者
Ki-Ahm Lee
Taehun Lee
机构
[1] Seoul National University,Department of Mathematical Sciences
[2] Korea Institute for Advanced Study,School of Mathematics
关键词
53C44; 35R35; 35K96; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the obstacle problem for the Gauss curvature flow with an exponent α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. Under the assumption that both the obstacle and the initial hypersurface are strictly convex closed hypersurfaces and that the obstacle is enclosed by the initial hypersurface, uniform estimates are obtained for several curvatures via a penalty method. We also prove that when the hypersurface is two dimensional with 0<α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 1$$\end{document}, the solution of the Gauss curvature flow with an obstacle exists for all time with bounded principal curvatures {λi}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _i\}$$\end{document}, where the upper bound is uniform, and the lower bound depends on the distance from the free boundary. Moreover, we show that there exists a finite time T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_*$$\end{document} after which the solution becomes stationary in the same shape as the obstacle.
引用
收藏
相关论文
共 50 条
  • [21] Flow by Gauss curvature to the Lp dual Minkowski problem
    Guang, Qiang
    Li, Qi-Rui
    Wang, Xu-Jia
    MATHEMATICS IN ENGINEERING, 2023, 5 (03): : 1 - 19
  • [22] Convexified gauss curvature flow of sets: A stochastic approximation
    Ishii, H
    Mikami, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) : 552 - 579
  • [23] Flow by Gauss curvature to the orlicz chord Minkowski problem
    Zhao, Xia
    Zhao, Peibiao
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 2405 - 2424
  • [24] Gauss maps of the Ricci-mean curvature flow
    Koike, Naoyuki
    Yamamoto, Hikaru
    GEOMETRIAE DEDICATA, 2018, 194 (01) : 169 - 185
  • [25] The free boundary in the Gauss Curvature Flow with flat sides
    Daskalopoulos, P
    Hamilton, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 510 : 187 - 227
  • [26] Gauss maps of the Ricci-mean curvature flow
    Naoyuki Koike
    Hikaru Yamamoto
    Geometriae Dedicata, 2018, 194 : 169 - 185
  • [27] TRANSLATING SOLUTIONS TO THE GAUSS CURVATURE FLOW WITH FLAT SIDES
    Choi, Kyeongsu
    Daskalopoulos, Panagiota
    Lee, Ki-Ahm
    ANALYSIS & PDE, 2021, 14 (02): : 595 - 616
  • [28] Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems
    Li, Qi-Rui
    Sheng, Weimin
    Wang, Xu-Jia
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (03) : 893 - 923
  • [29] Horizontal Gauss Curvature Flow of Graphs in Carnot Groups
    Martin, Erin Haller
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (04) : 1267 - 1302
  • [30] GAUSS MAPS OF TRANSLATING SOLITONS OF MEAN CURVATURE FLOW
    Bao, Chao
    Shi, Yuguang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4333 - 4339