We consider the obstacle problem for the Gauss curvature flow with an exponent α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document}. Under the assumption that both the obstacle and the initial hypersurface are strictly convex closed hypersurfaces and that the obstacle is enclosed by the initial hypersurface, uniform estimates are obtained for several curvatures via a penalty method. We also prove that when the hypersurface is two dimensional with 0<α≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0<\alpha \le 1$$\end{document}, the solution of the Gauss curvature flow with an obstacle exists for all time with bounded principal curvatures {λi}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{\lambda _i\}$$\end{document}, where the upper bound is uniform, and the lower bound depends on the distance from the free boundary. Moreover, we show that there exists a finite time T∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_*$$\end{document} after which the solution becomes stationary in the same shape as the obstacle.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Korea Inst Adv Study, Sch Math, Hoegiro 85, Seoul 02455, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Lee, Ki-Ahm
Lee, Taehun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Sch Math, Hoegiro 85, Seoul 02455, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Lee, Ki-Ahm
Lee, Taehun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Sch Math, Seoul 02455, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
机构:
Lanzhou Univ Technol, Dept Math, Lanzhou 730000, Peoples R ChinaLanzhou Univ Technol, Dept Math, Lanzhou 730000, Peoples R China
Chen, Bin
Shi, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Qinghai Normal Univ, Sch Math & Stat, Xining, Peoples R China
Northwest Normal Univ, Sch Math & Stat, Lanzhou, Peoples R ChinaLanzhou Univ Technol, Dept Math, Lanzhou 730000, Peoples R China
Shi, Wei
Wang, Weidong
论文数: 0引用数: 0
h-index: 0
机构:
China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang, Peoples R ChinaLanzhou Univ Technol, Dept Math, Lanzhou 730000, Peoples R China
机构:
Fudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China