Unified Analysis of Leap-Frog Methods for Solving Time-Domain Maxwell’s Equations in Dispersive Media

被引:0
|
作者
Jichun Li
机构
[1] Xiangtan University,Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[2] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
Journal of Scientific Computing | 2011年 / 47卷
关键词
Maxwell’s equations; Dispersive media; Leap-frog scheme;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the time dependent Maxwell’s equations resulting from dispersive medium models. First, the stability and Gauss’s law are proved for all three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Then leap-frog mixed finite element methods are developed for these three models. Optimal error estimates are proved for all three models solved by the lowest-order Raviart-Thomas-Nédélec spaces. Extensions to multiple pole dispersive media are presented also. Numerical results confirming the analysis are presented.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [41] Unified split-step precise integration time-domain method for dispersive media
    Liu, Qi
    Ma, Xihui
    Chen, Feng
    ELECTRONICS LETTERS, 2013, 49 (18) : 1135 - 1136
  • [42] Analysis of spatial high-order finite difference methods for Maxwell's equations in dispersive media
    Bokil, V. A.
    Gibson, N. L.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) : 926 - 956
  • [43] TWO ENERGY-CONSERVED SPLITTING METHODS FOR THREE-DIMENSIONAL TIME-DOMAIN MAXWELL'S EQUATIONS AND THE CONVERGENCE ANALYSIS
    Cai, Jiaxiang
    Hong, Jialin
    Wang, Yushun
    Gong, Yuezheng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1918 - 1940
  • [44] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [45] Survey on symplectic finite-difference time-domain schemes for Maxwell's equations
    Sha, Wei E. I.
    Huang, Zhixiang
    Chen, Mingsheng
    Wu, Xianliang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (02) : 493 - 500
  • [46] Radiation boundary conditions for Maxwell's equations: A review of accurate time-domain formulations
    Hagstrom, Thomas
    Lau, Stephen
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2007, 25 (03) : 305 - 336
  • [47] RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS:A REVIEW OF ACCURATE TIME-DOMAIN FORMULATIONS
    Thomas Hagstrom
    Stephen Lau
    Journal of Computational Mathematics, 2007, (03) : 305 - 336
  • [48] Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell's equations
    Hesthaven, JS
    Warburton, T
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) : 186 - 221
  • [49] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [50] Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations
    Kim, Joonshik
    Teixeira, Fernando L.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (06) : 2350 - 2356