Unified Analysis of Leap-Frog Methods for Solving Time-Domain Maxwell’s Equations in Dispersive Media

被引:0
|
作者
Jichun Li
机构
[1] Xiangtan University,Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[2] University of Nevada Las Vegas,Department of Mathematical Sciences
来源
关键词
Maxwell’s equations; Dispersive media; Leap-frog scheme;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the time dependent Maxwell’s equations resulting from dispersive medium models. First, the stability and Gauss’s law are proved for all three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Then leap-frog mixed finite element methods are developed for these three models. Optimal error estimates are proved for all three models solved by the lowest-order Raviart-Thomas-Nédélec spaces. Extensions to multiple pole dispersive media are presented also. Numerical results confirming the analysis are presented.
引用
收藏
页码:1 / 26
页数:25
相关论文
共 50 条
  • [21] Dissipative Scheme for Discontinuous Galerkin Time-Domain Method Based on a Leap-Frog Time-Stepping
    Peng, Da
    Tang, Xingji
    Yang, Hu
    He, Jianguo
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2013, 28 (07): : 573 - 580
  • [22] A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations
    Chun-Hao Teng
    Bang-Yan Lin
    Hung-Chun Chang
    Hei-Chen Hsu
    Chien-Nan Lin
    Ko-An Feng
    Journal of Scientific Computing, 2008, 36 : 351 - 390
  • [23] A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's equations
    Teng, Chun-Hao
    Lin, Bang-Yan
    Chang, Hung-Chun
    Hsu, Hei-Chen
    Lin, Chien-Nan
    Feng, Ko-An
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 36 (03) : 351 - 390
  • [24] ANALYSIS OF TIME-DOMAIN MAXWELL'S EQUATIONS IN BIPERIODIC STRUCTURES
    Bao, Gang
    Hu, Bin
    Li, Peijun
    Wang, Jue
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (01): : 259 - 286
  • [25] THE DOMAIN DECOMPOSITION METHOD FOR MAXWELL'S EQUATIONS IN TIME DOMAIN SIMULATIONS WITH DISPERSIVE METALLIC MEDIA
    Park, Jong Hyuk
    Strikwerda, John C.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02): : 684 - 702
  • [26] A reduced-order DG formulation based on POD method for the time-domain Maxwell's equations in dispersive media
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 : 249 - 266
  • [27] A novel class of explicit divergence-free time-domain methods for efficiently solving Maxwell's equations
    Yang, Hongli
    Zeng, Xianyang
    Wu, Xinyuan
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 268
  • [28] Numerical Analysis of AVF Methods for Three-Dimensional Time-Domain Maxwell’s Equations
    Jiaxiang Cai
    Yushun Wang
    Yuezheng Gong
    Journal of Scientific Computing, 2016, 66 : 141 - 176
  • [29] Numerical Analysis of AVF Methods for Three-Dimensional Time-Domain Maxwell's Equations
    Cai, Jiaxiang
    Wang, Yushun
    Gong, Yuezheng
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (01) : 141 - 176
  • [30] Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media
    Donderici, Burkay
    Teixeira, Fernando L.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (01) : 113 - 120