New semifields, PN and APN functions

被引:0
|
作者
Jürgen Bierbrauer
机构
[1] Michigan Technological University,Department of Mathematical Sciences
来源
Designs, Codes and Cryptography | 2010年 / 54卷
关键词
Semifield; PN function; APN function; Dembowski–Ostrom polynomial; Middle nucleus; Kernel; Isotopy; Dickson semifields; Albert semifields; 11T06; 12K10; 17A35; 51A35; 51A40;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a method of proving that certain functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f:F\longrightarrow F}$$\end{document} defined on a finite field F are either PN-functions (in odd characteristic) or APN-functions (in characteristic 2). This method is illustrated by giving short proofs of the APN-respectively the PN-property for various families of functions. The main new contribution is the construction of a family of PN-functions and their corresponding commutative semifields of dimension 4s in arbitrary odd characteristic. It is shown that a subfamily of order p4s for odd s > 1 is not isotopic to previously known examples.
引用
收藏
页码:189 / 200
页数:11
相关论文
共 50 条
  • [31] Some Results on the Known Classes of Quadratic APN Functions
    Budaghyan, Lilya
    Helleseth, Tor
    Li, Nian
    Sun, Bo
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 3 - 16
  • [32] Algebraic Construction of Near-Bent and APN Functions
    Prasanna Poojary
    Harikrishnan Panackal
    Vadiraja G. R. Bhatta
    Advances in Applied Clifford Algebras, 2019, 29
  • [33] Algebraic Construction of Near-Bent and APN Functions
    Poojary, Prasanna
    Panackal, Harikrishnan
    Bhatta, Vadiraja G. R.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [34] A direct proof of APN-ness of the Kasami functions
    Claude Carlet
    Kwang Ho Kim
    Sihem Mesnager
    Designs, Codes and Cryptography, 2021, 89 : 441 - 446
  • [35] ON THE FOURIER SPECTRA OF THE INFINITE FAMILIES OF QUADRATIC APN FUNCTIONS
    Bracken, Carl
    Zha, Zhengbang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (03) : 219 - 226
  • [36] S-Boxes, APN Functions and Related Codes
    Alvarez, Rafael
    McGuire, Gary
    ENHANCING CRYPTOGRAPHIC PRIMITIVES WITH TECHNIQUES FROM ERROR CORRECTING CODES, 2009, 23 : 49 - 62
  • [37] A direct proof of APN-ness of the Kasami functions
    Carlet, Claude
    Kim, Kwang Ho
    Mesnager, Sihem
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 441 - 446
  • [38] New Infinite Classes of 0-APN Power Functions over F2n
    Zhou, Huijuan
    Zhuo, Zepeng
    Chen, Guolong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (10) : 1595 - 1602
  • [39] Infinite families of 3-designs from APN functions
    Tang, Chunming
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (02) : 97 - 117
  • [40] On the Walsh spectrum of a family of quadratic APN functions with five terms
    QU LongJiang
    TAN Yin
    LI Chao
    ScienceChina(InformationSciences), 2014, 57 (02) : 271 - 277