New semifields, PN and APN functions

被引:0
|
作者
Jürgen Bierbrauer
机构
[1] Michigan Technological University,Department of Mathematical Sciences
来源
Designs, Codes and Cryptography | 2010年 / 54卷
关键词
Semifield; PN function; APN function; Dembowski–Ostrom polynomial; Middle nucleus; Kernel; Isotopy; Dickson semifields; Albert semifields; 11T06; 12K10; 17A35; 51A35; 51A40;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a method of proving that certain functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f:F\longrightarrow F}$$\end{document} defined on a finite field F are either PN-functions (in odd characteristic) or APN-functions (in characteristic 2). This method is illustrated by giving short proofs of the APN-respectively the PN-property for various families of functions. The main new contribution is the construction of a family of PN-functions and their corresponding commutative semifields of dimension 4s in arbitrary odd characteristic. It is shown that a subfamily of order p4s for odd s > 1 is not isotopic to previously known examples.
引用
收藏
页码:189 / 200
页数:11
相关论文
共 50 条