Structure of the set of positive solutions of a non-linear Schrödinger equation

被引:0
|
作者
Giovany M. Figueiredo
João R. Santos Júnior
Antonio Suárez
机构
[1] Universidade Federal de Brasília - UnB,Departamento de Matemática
[2] Universidade Federal do Pará,Faculdade de Matemática
[3] Universidad de Sevilla,Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence, uniqueness and multiplicity of positive solutions to a non-linear Schr¨odinger equation. We describe the set of positive solutions. We use mainly the sub-supersolution method, bifurcation and variational arguments to obtain the results.
引用
收藏
页码:485 / 505
页数:20
相关论文
共 50 条
  • [1] Structure of the set of positive solutions of a non-linear Schrodinger equation
    Figueiredo, Giovany M.
    Santos Junior, Joo R.
    Suarez, Antonio
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (01) : 485 - 505
  • [2] ASYMPTOTIC DECAY OF SOLUTIONS OF A NON-LINEAR SCHR■DINGER EQUATION IN R~3
    姚景齐
    ScienceBulletin, 1986, (12) : 860 - 861
  • [3] Instability for the Semiclassical Non-linear Schrödinger Equation
    Nicolas Burq
    Maciej Zworski
    Communications in Mathematical Physics, 2005, 260 : 45 - 58
  • [4] The non-linear Schrödinger equation with a periodic δ-interaction
    Jaime Angulo Pava
    Gustavo Ponce
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 497 - 551
  • [5] On the variational principle for the non-linear Schrödinger equation
    Zsuzsanna É. Mihálka
    Ádám Margócsy
    Ágnes Szabados
    Péter R. Surján
    Journal of Mathematical Chemistry, 2020, 58 : 340 - 351
  • [6] Decay Estimates and Smoothness for Solutions of the Dispersion Managed Non-linear Schrödinger Equation
    Dirk Hundertmark
    Young-Ran Lee
    Communications in Mathematical Physics, 2009, 286 : 851 - 873
  • [7] Destruction of the Beating Effect¶for a Non-Linear Schrödinger Equation
    Vincenzo Grecchi
    André Martinez
    Andrea Sacchetti
    Communications in Mathematical Physics, 2002, 227 : 191 - 209
  • [8] Positive solutions for asymptotically linear Schrödinger equation on hyperbolic space
    Gao, Dongmei
    Wang, Jun
    Wang, Zhengping
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)
  • [9] Haar wavelet collocation method for linear and non-linear Schrödinger equation
    Khan, Muhammad Ubaid
    Shah, Syed Azhar Ali
    Ahsan, Muhammad
    Alwuthaynani, Maher
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [10] Non-linear Schrödinger equation with non-local regional diffusion
    Patricio Felmer
    César Torres
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 75 - 98