Homogeneous polynomials and spurious local minima on the unit sphere

被引:0
|
作者
Jean B. Lasserre
机构
[1] University of Toulouse,LAAS
来源
Optimization Letters | 2022年 / 16卷
关键词
Homogeneous polynomials; Global and local minima; Optimization on the unit sphere;
D O I
暂无
中图分类号
学科分类号
摘要
We consider forms on the Euclidean unit sphere. We obtain a simple and complete characterization of all points that satisfies the standard second-order necessary condition of optimality. It is stated solely in terms of the value of (i) f, (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its Hessian, all evaluated at the point. In fact this property also holds for twice continuous differentiable functions that are positively homogeneous. We also characterize a class of degree-d forms with no spurious local minima on Sn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^{n-1}$$\end{document} by using a property of gradient ideals in algebraic geometry.
引用
收藏
页码:1105 / 1118
页数:13
相关论文
共 50 条
  • [31] Robust stability of polytopic systems via homogeneous polynomials
    Savov, S.
    Popchev, I.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2007, 60 (07): : 749 - 756
  • [32] Two methods for the maximization of homogeneous polynomials over the simplex
    Ahmed, Faizan
    Still, Georg
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 80 (02) : 523 - 548
  • [33] Two methods for the maximization of homogeneous polynomials over the simplex
    Faizan Ahmed
    Georg Still
    Computational Optimization and Applications, 2021, 80 : 523 - 548
  • [34] MUTUAL SINGULARITY OF RIESZ PRODUCTS ON THE UNIT SPHERE
    Doubtsov, Evgueni
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 269 - 277
  • [35] BASES IN THE SPACES OF HOMOGENEOUS POLYNOMIALS AND MULTILINEAR OPERATORS ON BANACH SPACES
    Ji, Donghai
    Bu, Qingying
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 1829 - 1842
  • [36] Continuous orthosymmetric multilinear maps and homogeneous polynomials on Riesz spaces
    Chil, Elmiloud
    Dorai, Abderraouf
    JOURNAL OF ANALYSIS, 2020, 28 (04) : 1127 - 1141
  • [37] Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors
    Munoz-Fernandez, G. A.
    Pellegrino, D.
    Seoane-Sepulveda, J. B.
    Weber, A.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 745 - 764
  • [38] Multilinear mappings versus homogeneous polynomials and a multipolynomial polarization formula
    Velanga, T.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (09) : 1625 - 1634
  • [39] Continuous orthosymmetric multilinear maps and homogeneous polynomials on Riesz spaces
    Elmiloud Chil
    Abderraouf Dorai
    The Journal of Analysis, 2020, 28 : 1127 - 1141
  • [40] A complete study of the geometry of 2-homogeneous polynomials on circle sectors
    Bernal-Gonzalez, L.
    Munoz-Fernandez, G. A.
    Rodriguez-Vidanes, D. L.
    Seoane-Sepulveda, J. B.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)