Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes

被引:0
作者
Holger Dette
Martin Kroll
机构
[1] Ruhr-Universität Bochum,Fakultät für Mathematik, Lehrstuhl für Stochastik
来源
Annals of the Institute of Statistical Mathematics | 2022年 / 74卷
关键词
Asymptotic equivalence; Nonparametric regression; Dependent errors; Gauss–Markov process; Triangular kernel;
D O I
暂无
中图分类号
学科分类号
摘要
For the class of Gauss–Markov processes we study the problem of asymptotic equivalence of the nonparametric regression model with errors given by the increments of the process and the continuous time model, where a whole path of a sum of a deterministic signal and the Gauss–Markov process can be observed. We derive sufficient conditions which imply asymptotic equivalence of the two models. We verify these conditions for the special cases of Sobolev ellipsoids and Hölder classes with smoothness index >1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>1/2$$\end{document} under mild assumptions on the Gauss–Markov process. To give a counterexample, we show that asymptotic equivalence fails to hold for the special case of Brownian bridge. Our findings demonstrate that the well-known asymptotic equivalence of the Gaussian white noise model and the nonparametric regression model with i.i.d. standard normal errors (see Brown and Low (Ann Stat 24:2384–2398, 1996)) can be extended to a setup with general Gauss–Markov noises.
引用
收藏
页码:1163 / 1196
页数:33
相关论文
共 36 条
  • [1] Abundo M(2014)On the representation of an integrated Gauss–Markov process Scientiae Mathematicae Japonicae 77 357-361
  • [2] Beder JH(1987)A sieve estimator for the mean of a Gaussian process The Annals of Statistics 15 59-78
  • [3] Brown LD(1996)Asymptotic equivalence of nonparametric regression and white noise The Annals of Statistics 24 2384-2398
  • [4] Low MG(1998)Asymptotic nonequivalence of nonparametric experiments when the smoothness index is The Annals of Statistics 26 279-287
  • [5] Brown LD(2002)Asymptotic equivalence theory for nonparametric regression with random design The Annals of Statistics 30 688-707
  • [6] Zhang CH(2006)A continuous Gaussian approximation to a nonparametric regression in two dimensions Bernoulli 12 143-156
  • [7] Brown LD(2007)Asymptotic approximation of nonparametric regression experiments with unknown variances The Annals of Statistics 35 1644-1673
  • [8] Cai TT(2016)Optimal designs in regression with correlated errors The Annals of Statistics 44 113-152
  • [9] Low MG(1949)Heuristic approach to the Kolmogorov-Smirnov theorems The Annals of Mathematical Statistics 20 393-403
  • [10] Zhang CH(2010)Asymptotic equivalence of spectral density estimation and Gaussian white noise The Annals of Statistics 38 181-214