Domination Number of Graphs Without Small Cycles

被引:0
作者
Xue-gang Chen
Moo Young Sohn
机构
[1] North China Electric Power University,Department of Mathematics
[2] Changwon National University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination number; Bounds; Minimum degree;
D O I
暂无
中图分类号
学科分类号
摘要
It has been shown (J. Harant and D. Rautenbach, Domination in bipartite graphs. Discrete Math. 309:113–122, 2009) that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5, 7, 10 nor 13 is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3n}{8}}$$\end{document}. They believed that the assumption that the graphs do not contain cycles of length 10 might be replaced by the exclusion of finitely many exceptional graphs. In this paper, we positively answer that if G is a connected graph of order n and minimum degree at least 2 that does not contain cycles of length 4, 5 nor 7 and is not one of three exceptional graphs, then the domination number of G is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3n}{8}}$$\end{document}.
引用
收藏
页码:821 / 830
页数:9
相关论文
共 5 条
[1]  
Harant J.(2009)Domination in bipartite graphs Discrete Math. 309 113-122
[2]  
Rautenbach D.(1989)Domination in graphs with minimum degree two J. Graph Theory 13 749-762
[3]  
McCuaig W.(1996)Paths, stars and the number three Comb. Probab. Comput. 5 267-276
[4]  
Shepherd B.(undefined)undefined undefined undefined undefined-undefined
[5]  
Reed B.(undefined)undefined undefined undefined undefined-undefined