Existence and asymptotic stability of periodic orbits for a class of electromechanical systems: a perturbation theory approach

被引:0
|
作者
Márcio José Horta Dantas
Rubens Sampaio
Roberta Lima
机构
[1] UFU,Faculdade de Matemática
[2] PUC-Rio,Mechanical Engineering Department
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
34C25; 34D10; 70K20; 70K28; Electromechanical system; Periodic orbits; Stability; Asymptotic stability; Nonlinear dynamics; Perturbation theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this work a class of time-periodic electromechanical system is investigated. This system is nonhyperbolic. By using Regular Perturbation Theory, results on existence and stability of periodic orbits are obtained. Moreover, the dynamics of this system can be approached in a mathematically rigorous way. These results generalize previous ones obtained for autonomous electromechanical systems.
引用
收藏
相关论文
共 50 条
  • [1] Existence and asymptotic stability of periodic orbits for a class of electromechanical systems: a perturbation theory approach
    Horta Dantas, Marcio Jose
    Sampaio, Rubens
    Lima, Roberta
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01): : 1 - 14
  • [2] Asymptotic stability of quasi-periodic orbits
    Breunung, Thomas
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2259):
  • [3] Existence of Homoclinic Cycles and Periodic Orbits in a Class of Three-Dimensional Piecewise Affine Systems
    Wang, Lei
    Yang, Xiao-Song
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (02):
  • [4] Existence and stability of periodic orbits of periodic difference equations with delays
    Alsharawi, Ziyad
    Angelos, James
    Elaydi, Saber
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (01): : 203 - 217
  • [5] Existence of periodic orbits of stable saturated systems
    Moreno, I
    Suárez, R
    SYSTEMS & CONTROL LETTERS, 2004, 51 (3-4) : 293 - 309
  • [6] On the existence and stability of periodic orbits in non ideal problems: General results
    Dantas, Marcio Jose Horta
    Balthazar, Jose Manoel
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 940 - 958
  • [7] On the existence and stability of periodic orbits in non ideal problems: General results
    Márcio José Horta Dantas
    José Manoel Balthazar
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 940 - 958
  • [8] On the Non-Existence of Periodic Orbits for a Class of Two-Dimensional Kolmogorov Systems
    Boukoucha R.
    Russian Mathematics, 2018, 62 (1) : 1 - 6
  • [9] ON THE CONTROL OF STABILITY OF PERIODIC ORBITS OF COMPLETELY INTEGRABLE SYSTEMS
    Tudoran, Razvan M.
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (01): : 109 - 124
  • [10] The existence and stability analyses of periodic orbits in 3-dimensional piecewise affine systems
    Wang, Lei
    Yang, Xiao-Song
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 : 157 - 173