Vaidya black hole in non-stationary de Sitter space: Hawking’s temperature

被引:0
作者
Ngangbam Ishwarchandra
K. Yugindro Singh
机构
[1] Manipur University,Department of Physics
来源
Astrophysics and Space Science | 2014年 / 350卷
关键词
Vaidya solution; de Sitter space; Exact solutions; Vaidya-de Sitter solution; Energy conditions; Surface gravity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a class of non-stationary solutions of Einstein’s field equations describing embedded Vaidya-de Sitter black holes with a cosmological variable function Λ(u). The Vaidya-de Sitter black hole is interpreted as the radiating Vaidya black hole is embedded into the non-stationary de Sitter space with variable Λ(u). The energy-momentum tensor of the Vaidya-de Sitter black hole is expressed as the sum of the energy-momentum tensors of the Vaidya null fluid and that of the non-stationary de Sitter field, and satisfies the energy conservation law. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor. We find the violation of the strong energy condition due to the negative pressure and leading to a repulsive gravitational force of the matter field associated with Λ(u) in the space-time. We also find that the time-like vector field for an observer in the Vaidya-de Sitter space is expanding, accelerating, shearing and non-rotating. It is also found that the space-time geometry of non-stationary Vaidya-de Sitter solution with variable Λ(u) is Petrov type D in the classification of space-times. We also find the Vaidya-de Sitter black hole radiating with a thermal temperature proportional to the surface gravity and entropy also proportional to the area of the cosmological black hole horizon.
引用
收藏
页码:285 / 292
页数:7
相关论文
共 27 条
[1]  
Bousso R.(2008)undefined Gen. Relativ. Gravit. 40 607-637
[2]  
Cai R.G.(1998)undefined Class. Quantum Gravity 15 2783-2793
[3]  
Ji J.Y.(2003)undefined Int. J. Mod. Phys. D 12 347-368
[4]  
Soh K.S.(2006)undefined Int. J. Mod. Phys. D 15 1753-1935
[5]  
Chan R.(1977)undefined Phys. Rev. D 15 2738-2751
[6]  
da Silva M.F.A.(1981)undefined Phys. Rev. D 33 347-356
[7]  
da Roch J.F.V(2005)undefined Int. J. Mod. Phys. D 14 973-994
[8]  
Copeland E.J.(2005)undefined Gen. Relativ. Gravit. 37 19-863
[9]  
Sami M.(2009)undefined Int. J. Mod. Phys. D 18 853-591
[10]  
Tsujikawa S.(2011)undefined Astrophys. Space Sci. 335 581-417