Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. Part II

被引:17
作者
André N. [1 ]
Shafrir I. [1 ]
机构
[1] Department of Mathematics,
[2] University of Tours,undefined
[3] Parc de Grandmont,undefined
[4] 37200 Tours,undefined
[5] France,undefined
[6] Department of Mathematics,undefined
[7] Technion – I.I.T.,undefined
[8] 32000 Haifa,undefined
[9] Israel,undefined
关键词
Asymptotic Behavior;
D O I
10.1007/s002050050084
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:75 / 98
页数:23
相关论文
共 15 条
[1]  
André, N., Shafrir, I., Minimization of the Ginzburg-Landau functional with weight (1995) C. R. Acad. Sci. Paris, 321, pp. 999-1004. , Série I
[2]  
André, N., Shafrir, I., Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight I (1998) Arch. Rational Mech. Anal., 142, pp. 45-73
[3]  
Brezis, H., (1997) Lecture Notes on Ginzburg-Landau Vortices, , Scuola Normale Superiore, Pisa
[4]  
Bethuel, F., Brezis, H., Hélein, F., Asymptotics for the minimization of a Ginzburg-Landau functional (1993) Calc. Variations PDE, 1, pp. 123-148
[5]  
Bethuel, F., Brezis, H., Hélein, F., (1994) Ginzburg-Landau Vortices, , Birkhäuser
[6]  
Beaulieu, A., Hadiji, R., Asymptotics for minimizers of a class of Ginzburg-Landau equations with weight (1995) C. R. Acad. Sci. Paris, 320, pp. 181-186. , Série I
[7]  
Beaulieu, A., Hadiji, R., On a class of Ginzburg-Landau equations with weight (1995) Panamerican Math. J., 5, pp. 1-33
[8]  
Brezis, H., Merle, F., Rivière, T., Quantization effects for - ΔU = u(1 - | u |2) in ℝ2 (1994) Arch. Rational Mech. Anal., 126, pp. 35-58
[9]  
Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M., A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description (1992) Comm. Math. Phys., 143, pp. 501-525
[10]  
Comte, M., Mironescu, P., Etude d'un minimiseurde l'énergie de Ginzburg-Landau près de ses zéros (1995) C. R. Acad. Sci. Paris, 320, pp. 289-293. , Série I