CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data

被引:0
|
作者
Simone Puccio
Giorgio Grillo
Giorgia Alvisi
Caterina Scirgolea
Giovanni Galletti
Emilia Maria Cristina Mazza
Arianna Consiglio
Gabriele De Simone
Flavio Licciulli
Enrico Lugli
机构
[1] IRCCS Humanitas Research Hospital,Laboratory of Translational Immunology
[2] UoS Milan,Institute of Genetic and Biomedical Research
[3] National Research Council,Institute for Biomedical Technologies
[4] National Research Council,School of Biological Sciences, Department of Molecular Biology
[5] Flow Cytometry Core,undefined
[6] IRCCS Humanitas Research Hospital,undefined
[7] University of California San Diego,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Flow cytometry (FCM) can investigate dozens of parameters from millions of cells and hundreds of specimens in a short time and at a reasonable cost, but the amount of data that is generated is considerable. Computational approaches are useful to identify novel subpopulations and molecular biomarkers, but generally require deep expertize in bioinformatics and the use of different platforms. To overcome these limitations, we introduce CRUSTY, an interactive, user-friendly webtool incorporating the most popular algorithms for FCM data analysis, and capable of visualizing graphical and tabular results and automatically generating publication-quality figures within minutes. CRUSTY also hosts an interactive interface for the exploration of results in real time. Thus, CRUSTY enables a large number of users to mine complex datasets and reduce the time required for data exploration and interpretation. CRUSTY is accessible at https://crusty.humanitas.it/.
引用
收藏
相关论文
共 50 条
  • [1] CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data
    Puccio, Simone
    Grillo, Giorgio
    Alvisi, Giorgia
    Scirgolea, Caterina
    Galletti, Giovanni
    Mazza, Emilia Maria Cristina
    Consiglio, Arianna
    De Simone, Gabriele
    Licciulli, Flavio
    Lugli, Enrico
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] CytoSPADE: high-performance analysis and visualization of high-dimensional cytometry data
    Linderman, Michael D.
    Bjornson, Zach
    Simonds, Erin F.
    Qiu, Peng
    Bruggner, Robert V.
    Sheode, Ketaki
    Meng, Teresa H.
    Plevritis, Sylvia K.
    Nolan, Garry P.
    BIOINFORMATICS, 2012, 28 (18) : 2400 - 2401
  • [3] Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional Data Analysis
    Ferrer-Font, Laura
    Kraker, Geoffrey
    Hally, Kathryn E.
    Price, Kylie M.
    CURRENT PROTOCOLS, 2023, 3 (02):
  • [4] High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data
    Ferrer-Font, Laura
    Mayer, Johannes U.
    Old, Samuel
    Hermans, Ian F.
    Irish, Jonathan
    Price, Kylie M.
    CYTOMETRY PART A, 2020, 97 (08) : 824 - 831
  • [5] piNET: a versatile web platform for downstream analysis and visualization of proteomics data
    Shamsaei, Behrouz
    Chojnacki, Szymon
    Pilarczyk, Marcin
    Najafabadi, Mehdi
    Niu, Wen
    Chen, Chuming
    Ross, Karen
    Matlock, Andrea
    Muhlich, Jeremy
    Chutipongtanate, Somchai
    Zheng, Jie
    Turner, John
    Vidovic, Dusica
    Jaffe, Jake
    MacCoss, Michael
    Wu, Cathy
    Pillai, Ajay
    Ma'ayan, Avi
    Schurer, Stephan
    Kouril, Michal
    Medvedovic, Mario
    Meller, Jarek
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W85 - W93
  • [6] Multipass high-dimensional flow cytometry
    Lugli, Enrico
    Roederer, Mario
    Sottile, Rosa
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (03) : 209 - 211
  • [7] High-dimensional data visualization
    Tang, Lin
    NATURE METHODS, 2020, 17 (02) : 129 - 129
  • [8] High-dimensional data visualization
    Lin Tang
    Nature Methods, 2020, 17 : 129 - 129
  • [9] Multipass high-dimensional flow cytometry
    Enrico Lugli
    Mario Roederer
    Rosa Sottile
    Nature Biomedical Engineering, 2024, 8 : 209 - 211
  • [10] pyInfinityFlow: optimized imputation and analysis of high-dimensional flow cytometry data for millions of cells
    Ferchen, Kyle
    Salomonis, Nathan
    Grimes, H. Leighton
    BIOINFORMATICS, 2023, 39 (05)