The space debris in Earth’s orbit has increased drastically due to the failure of spacecraft, rocket bodies, and mission-related objects. These objects in orbit increase the space waste and challenge other flying objects such as spacecraft. A hypervelocity impact of space debris on spacecraft structures can have a range of effects (mechanical damage and functional failure), raising significant concerns about spacecraft safety. This paper reviews the different studies on the performance and development of the Whipple shield against the hypervelocity impact of space debris. The study focuses on the impact mechanism, dynamic Fragmentation of materials, strength models, Equation of state, characteristics, and model of the debris cloud. The strength models (Steinberg–Guinan and Johnson–Cook) and Mie–Gruneisen equation of state, primarily used for hypervelocity impact applications, are thoroughly covered in this study. The study also reported the various experimental and numerical techniques for high and hypervelocity impact. The study concluded that mesh-based, mesh-free, and hybrid finite element methods are reliable for analyzing Whipple shield targets to resist hypervelocity impact. The study also observed that the two-stage light gas gun technique investigates most experimental analyses of hypervelocity impact on the Whipple shield. Alongside reviewing the abovementioned aspects, this paper also underlines the future scope of study in this paradigm. The authors strongly believe that this study provides more insights into the fundamentals and perceptions of the Whipple shield to protect the spacecraft against the hypervelocity impact of space debris.