Approximation for scheduling on uniform nonsimultaneous parallel machines

被引:0
作者
Liliana Grigoriu
Donald K. Friesen
机构
[1] Fakultät für Wirtschaftswissenschaften,Department of Computer Science
[2] Wirtschaftsinformatik und Wirtschaftsrecht,undefined
[3] Universität Siegen,undefined
[4] Texas A&M University,undefined
来源
Journal of Scheduling | 2017年 / 20卷
关键词
Multiprocessor scheduling; Uniform processors; MULTIFIT; Nonsimultaneous start times; Worst-case bounds; Makespan;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of scheduling on uniform machines which may not start processing at the same time with the purpose of minimizing the maximum completion time. We propose using a variant of the MULTIFIT algorithm, LMULTIFIT, which generates schedules which end within 1.382 times the optimal maximum completion time for the general problem, and within 6/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{6}/2$$\end{document} times the optimal maximum completion time for problem instances with two machines. Both developments represent improvements over previous results. We prove that LMULTIFIT worst-case bounds for scheduling on simultaneous uniform machines are also LMULTIFIT worst-case approximation bounds for scheduling on nonsimultaneous uniform machines and show that worst-case approximation bounds of MULTIFIT variants for simultaneous uniform machines from previous literature also apply to LMULTIFIT. We also comment on how a PTAS for scheduling on a constant number of uniform machines with fixed jobs can be used to obtain a PTAS for scheduling on a constant number of uniform nonsimultaneous parallel machines.
引用
收藏
页码:593 / 600
页数:7
相关论文
共 24 条
  • [1] Burkard RE(1998)A note on MULTIFIT scheduling for uniform machines Computing 61 277-283
  • [2] He Y(1999)The worst-case analysis of the MULTIFIT algorithm for scheduling nonsimultaneous parallel machines Discrete Applied Mathematics 92 135-147
  • [3] Chang SY(1991)Tighter bound for MULTIFIT scheduling on uniform processors Discrete Applied Mathematics 31 227-260
  • [4] Hwang H-C(1978)An application of bin-packing to multiprocessor scheduling SIAM Journal on Computing 7 1-17
  • [5] Chen B(1983)Bounds for MULTIFIT scheduling on uniform processors SIAM Journal on Computing 12 60-69
  • [6] Coffman EG(1969)Bounds on multiprocessing timing anomalies SIAM Journal of Applied Mathematics 17 416-429
  • [7] Garey MR(2010)Scheduling on same-speed processors with at most one downtime on each machine Discrete Optimization 7 212-221
  • [8] Johnson DS(2015)Scheduling on uniform processors with at most one downtime on each machine Discrete Optimization 17 14-24
  • [9] Friesen DK(2000)Uniform machine scheduling with machine available constraints Acta Mathematicae Applicatae Sinica (English Series) 16 122-129
  • [10] Langston MA(2014)Exact performance of MULTIFIT for nonsimultaneous machines Discrete Applied Mathematics 167 172-187