This paper explores the impact of geometry on computability and complexity in Winfree’s model of nanoscale self-assembly. We work in the two-dimensional tile assembly model, i.e., in the discrete Euclidean plane ℤ×ℤ. Our first main theorem says that there is a roughly quadratic function f such that a set A⊆ℤ+ is computably enumerable if and only if the set XA={(f(n),0)∣n∈A}—a simple representation of A as a set of points on the x-axis—self-assembles in Winfree’s sense. In contrast, our second main theorem says that there are decidable sets D⊆ℤ×ℤ that do not self-assemble in Winfree’s sense.
机构:
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, StuttgartPhysical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart
机构:
Univ Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USAUniv Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
Caballero, David
Gomez, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USAUniv Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
Gomez, Timothy
Schweller, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USAUniv Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
Schweller, Robert
Wylie, Tim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USAUniv Texas Rio Grande Valley, Dept Comp Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA