Outer Approximation for Mixed-Integer Nonlinear Robust Optimization

被引:0
作者
Martina Kuchlbauer
Frauke Liers
Michael Stingl
机构
[1] Friedrich-Alexander-Universität Erlangen-Nürnberg,
[2] Germany,undefined
来源
Journal of Optimization Theory and Applications | 2022年 / 195卷
关键词
Robust optimization; Mixed-integer nonlinear optimization; Outer approximation; Bundle method; Gas transport problem; 90C17; 90C30; 90C11; 90C47; 90C35;
D O I
暂无
中图分类号
学科分类号
摘要
Currently, few approaches are available for mixed-integer nonlinear robust optimization. Those that do exist typically either require restrictive assumptions on the problem structure or do not guarantee robust protection. In this work, we develop an algorithm for convex mixed-integer nonlinear robust optimization problems where a key feature is that the method does not rely on a specific structure of the inner worst-case (adversarial) problem and allows the latter to be non-convex. A major challenge of such a general nonlinear setting is ensuring robust protection, as this calls for a global solution of the non-convex adversarial problem. Our method is able to achieve this up to a tolerance, by requiring worst-case evaluations only up to a certain precision. For example, the necessary assumptions can be met by approximating a non-convex adversarial via piecewise relaxations and solving the resulting problem up to any requested error as a mixed-integer linear problem.
引用
收藏
页码:1056 / 1086
页数:30
相关论文
共 50 条
  • [31] Robust Quadratic Programming with Mixed-Integer Uncertainty
    Mittal, Areesh
    Gokalp, Can
    Hanasusanto, Grani A.
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (02) : 201 - 218
  • [32] K-adaptability in two-stage mixed-integer robust optimization
    Subramanyam, Anirudh
    Gounaris, Chrysanthos E.
    Wiesemann, Wolfram
    MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (02) : 193 - 224
  • [33] K-adaptability in two-stage mixed-integer robust optimization
    Anirudh Subramanyam
    Chrysanthos E. Gounaris
    Wolfram Wiesemann
    Mathematical Programming Computation, 2020, 12 : 193 - 224
  • [34] Generalized branch-and-cut framework for mixed-integer nonlinear optimization problems
    Kesavan, P
    Barton, PI
    COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 1361 - 1366
  • [35] Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming
    Melo, Wendel
    Fampa, Marcia
    Raupp, Fernanda
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (02) : 373 - 389
  • [36] Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming
    Wendel Melo
    Marcia Fampa
    Fernanda Raupp
    Journal of Global Optimization, 2014, 60 : 373 - 389
  • [37] Solving mixed-integer robust optimization problems with interval uncertainty using Benders decomposition
    Siddiqui, Sauleh
    Gabriel, Steven A.
    Azarm, Shapour
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (04) : 664 - 673
  • [38] Robust energy management inactive distribution networks using mixed-integer convex optimization
    Useche-Arteaga, Mario
    Gil-Gonzalez, Walter
    Gomis-Bellmunt, Oriol
    Cheah-Mane, Marc
    Lacerda, Vinicius
    ELECTRIC POWER SYSTEMS RESEARCH, 2025, 241
  • [39] Sample average approximation for stochastic nonconvex mixed integer nonlinear programming via outer-approximation
    Li, Can
    Bernal, David E.
    Furman, Kevin C.
    Duran, Marco A.
    Grossmann, Ignacio E.
    OPTIMIZATION AND ENGINEERING, 2021, 22 (03) : 1245 - 1273
  • [40] Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set
    Postek, Krzysztof
    den Hertog, Dick
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (03) : 553 - 574