Mitochondrial alternative oxidase pathway helps in nitro-oxidative stress tolerance in germinating chickpea

被引:1
作者
Joseph, Josepheena [1 ]
Samant, Sanjib Bal [1 ]
Gupta, Kapuganti Jagadis [1 ]
机构
[1] Natl Inst Plant Genome Res, Aruna Asaf Ali Marg, New Delhi 110067, India
关键词
Alternative oxidase; mitochondria; nitro-oxidative stress; pyruvate; respiration; salicyl-hydroxamic acid; PROTEIN-TYROSINE NITRATION; ELECTRON-TRANSPORT; PEROXYNITRITE; ARABIDOPSIS; RESPIRATION; INHIBITION; REDUCTASE; METABOLISM; ACTIVATION; EXPRESSION;
D O I
10.1007/s12038-024-00424-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mitochondrial alternative oxidase (AOX) is an important protein that can help in regulating reactive oxygen species and nitric oxide in plants. The role of AOX in regulation of nitro-oxidative stress in chickpea is not known. Using germinating chickpea as a model system, we investigated the role of AOX in nitro-oxidative stress tolerance. NaCl treatment was used as an inducer of nitro-oxidative stress. Treatment of germinating seeds with 150 mM NaCl led to reduced germination and radicle growth. The AOX inhibitor SHAM caused further inhibition of germination, and the AOX inducer pyruvate improved growth of the radicle under NaCl stress. Isolated mitochondria from germinated seeds under salt stress not only increased AOX capacity but also enhanced AOX protein expression. Measurement of superoxide levels revealed that AOX inhibition by SHAM can enhance superoxide levels, whereas the AOX inducer pyruvate reduced superoxide levels. Measurement of NO by gas phase chemiluminescence revealed enhanced NO generation in response to NaCl treatment. Upon NaCl treatment there was enhanced tyrosine nitration, which is an indicator of nitrosative stress response. Taken together, our results revealed that AOX induced under salinity stress in germinating chickpea can help in mitigating nitro-oxidative stress, thereby improving germination.
引用
收藏
页数:10
相关论文
共 50 条
[31]   The p38 Pathway Regulates Oxidative Stress Tolerance by Phosphorylation of Mitochondrial Protein IscU [J].
Tian, Lili ;
Chen, Jianming ;
Chen, Mingliang ;
Gui, Chloe ;
Zhong, Chuan-qi ;
Hong, Lixin ;
Xie, Changchuan ;
Wu, Xiurong ;
Yang, Lirong ;
Ahmad, Vakil ;
Han, Jiahuai .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (46) :31856-31865
[32]   Nitro-Oxidative Stress after Neuronal Ischemia Induces Protein Nitrotyrosination and Cell Death [J].
Tajes, Marta ;
Ill-Raga, Gerard ;
Palomer, Ernest ;
Ramos-Fernandez, Eva ;
Guix, Francesc X. ;
Bosch-Morato, Monica ;
Guivernau, Biuse ;
Jimenez-Conde, Jordi ;
Ois, Angel ;
Perez-Asensio, Fernando ;
Reyes-Navarro, Mario ;
Caballo, Carolina ;
Galan, Ana M. ;
Alameda, Francesc ;
Escolar, Gines ;
Opazo, Carlos ;
Planas, Anna ;
Roquer, Jaume ;
Valverde, Miguel A. ;
Munoz, Francisco J. .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2013, 2013
[33]   Effect of maximal-intensity exercise on systemic nitro-oxidative stress in men and women [J].
Wiecek, Magdalena ;
Maciejczyk, Marcin ;
Szymura, Jadwiga ;
Szygula, Zbigniew .
REDOX REPORT, 2017, 22 (04) :176-182
[34]   The Mitochondrial Alternative Oxidase in Ustilago maydis Is Not Involved in Response to Oxidative Stress Induced by Paraquat [J].
Romero-Aguilar, Lucero ;
Vazquez-Meza, Hector ;
Guerra-Sanchez, Guadalupe ;
Ivan Luqueno-Bocardo, Oscar ;
Pablo Pardo, Juan .
JOURNAL OF FUNGI, 2022, 8 (11)
[35]   The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring Wistar rats [J].
Danila, Oana-Ofelia ;
Berghian, Alexandra Sevastre ;
Dionisie, Vlad ;
Gheban, Dan ;
Olteanu, Diana ;
Tabaran, Flaviu ;
Baldea, Ioana ;
Katona, Gabriel ;
Moldovan, Bianca ;
Clichici, Simona ;
David, Luminita ;
Filip, Gabriela Adriana .
NANOMEDICINE, 2017, 12 (12) :1455-1473
[36]   Nitro-oxidative nucleotide modifications in plants and associated microorganisms: signalling sensors or stress symptoms? [J].
Chmielowska-Bak, Jagna ;
Sobieszczuk-Nowicka, Ewa ;
Arasimowicz-Jelonek, Magdalena .
JOURNAL OF EXPERIMENTAL BOTANY, 2025,
[37]   Nitro-oxidative Stress Is Involved in Anticancer Activity of 17β-Estradiol Derivative in Neuroblastoma Cells [J].
Gorska, Magdalena ;
Kuban-Jankowska, Alicja ;
Milczarek, Ryszard ;
Wozniak, Michal .
ANTICANCER RESEARCH, 2016, 36 (04) :1693-1698
[38]   Co-Exposure of Cardiomyocytes to IFN-γ and TNF-α Induces Mitochondrial Dysfunction and Nitro-Oxidative Stress: Implications for the Pathogenesis of Chronic Chagas Disease Cardiomyopathy [J].
Nunes, Joao Paulo Silva ;
Andrieux, Pauline ;
Brochet, Pauline ;
Almeida, Rafael Ribeiro ;
Kitano, Eduardo ;
Honda, Andre Kenji ;
Iwai, Leo Kei ;
Andrade-Silva, Debora ;
Goudenege, David ;
Alcantara Silva, Karla Deysiree ;
Vieira, Raquel de Souza ;
Levy, Debora ;
Bydlowski, Sergio Paulo ;
Gallardo, Frederic ;
Torres, Magali ;
Bocchi, Edimar Alcides ;
Mano, Miguel ;
Santos, Ronaldo Honorato Barros ;
Bacal, Fernando ;
Pomerantzeff, Pablo ;
Laurindo, Francisco Rafael Martins ;
Teixeira, Priscila Camillo ;
Nakaya, Helder I. ;
Kalil, Jorge ;
Procaccio, Vincent ;
Chevillard, Christophe ;
Cunha-Neto, Edecio .
FRONTIERS IN IMMUNOLOGY, 2021, 12
[39]   Correlation of adenosine deaminase operating under nitro-oxidative stress with tumor and vascularization in patients with advanced gallbladder carcinoma [J].
Tounsi, Nabila ;
Djerdjouri, Bahia ;
Bouzid, Chafik ;
Bentabak, Kamel .
JOURNAL OF APPLIED BIOMEDICINE, 2019, 17 (03) :175-183
[40]   Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium [J].
Oakley, Clinton A. ;
Hopkinson, Brian M. ;
Schmidt, Gregory W. .
CORAL REEFS, 2014, 33 (02) :543-552