Boundedness of non regular pseudodifferential operators on variable Besov spaces

被引:0
作者
Douadi Drihem
Wafa Hebbache
机构
[1] M’sila University,Laboratory of Functional Analysis and Geometry of Spaces, Department of Mathematics
来源
Journal of Pseudo-Differential Operators and Applications | 2017年 / 8卷
关键词
Variable Besov spaces; Pseudodifferential operators; Non regular symbols; 46E35; 47B30; 35S50;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness of non regular pseudodifferential operators, with symbols belonging to certain vector-valued Besov space, on Besov spaces with variable smoothness and integrabilty. These symbols include the classical Hörmander classes.
引用
收藏
页码:167 / 189
页数:22
相关论文
共 48 条
[1]  
Almeida A(2010)Besov spaces with variable smoothness and integrability J. Funct. Anal. 258 1628-1655
[2]  
Hästö P(2014)Interpolation in variable exponent spaces Rev. Mat. Complut 27 657-676
[3]  
Almeida A(1988)Une algebre maximale d’opérateurs pseudo-différentiels Comm. Partial Diff. Equ. 13 1059-1083
[4]  
Hästö P(1989)Inégalités Bull. Soc. Math. France 116 401-412
[5]  
Bourdaud G(1971) précis ées pour la classe J. Math. Soc. Japan 23 374-378
[6]  
Bourdaud G(1972)On the boundedness of pseudo-differential operators Proc. Nat. Acad. Sci. USA 69 1185-1187
[7]  
Meyer Y(2006)A class of bounded pseudo-differential operators Ann. Acad. Sci. Fenn. Math 13 239-264
[8]  
Calderón A-P(1984)The boundedness of classical operators in variable Ann. Math 120 371-397
[9]  
Vaillancourt R(2004) spaces Math. Inequal. Appl 7 245-253
[10]  
Calderón A-P(2009)A boundedness criterion for generalized Calderón–Zygmund operators J. Funct. Anal 256 1731-1768