On Lp-Resolvent Estimates for Second-Order Elliptic Equations in Divergence Form

被引:0
作者
Byungsoo Kang
Hyunseok Kim
机构
[1] Sogang University,Department of Mathematics
来源
Potential Analysis | 2019年 / 50卷
关键词
Resolvent estimates; Elliptic equations; Dirichlet problems; Lower order terms; 35J15; 35J25; 47A10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet problems for second-order linear elliptic equations in divergence form. The leading coefficient A has small BMO semi-norm and first-order coefficient b belongs to Lr, where n≤r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n \leq r < \infty $\end{document} if n ≥ 3 and 2<r<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2 < r < \infty $\end{document} if n = 2. We first establish Lp-resolvent estimates on bounded domains having small Lipschitz constant when r/(r−1)<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r/(r-1) < p < \infty $\end{document}. Under the additional assumption div A ∈ Lr, we also establish Lp-resolvent estimates on bounded domains with C1,1 boundary when 1 < p < r.
引用
收藏
页码:107 / 133
页数:26
相关论文
共 30 条
  • [1] Agmon S(1962)On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems Comm. Pure Appl. Math. 15 119-147
  • [2] Auscher P(2002)Observations on W1,p estimates for divergence elliptic equations with VMO coefficients Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 487-509
  • [3] Qafaoui M(1994)The principal eigenvalue and maximum principle for second-order elliptic operators in general domains Comm. Pure Appl. Math. 47 47-92
  • [4] Berestycki H(2004)Elliptic equations with BMO coefficients in Reifenberg domains Comm. Pure Appl. Math. 57 1283-1310
  • [5] Nirenberg L(2005)Elliptic equations with BMO coefficients in Lipschitz domains Trans. Amer. Math. Soc. 357 1025-1046
  • [6] Varadhan SRS(2010)Elliptic equations in divergence form with partially BMO coefficients Arich. Ration. Mech. Anal. 196 25-70
  • [7] Byun S(2011)On the Lp-solvability of higher order parabolic and elliptic systems with BMO coefficients Arich. Ration. Mech. Anal. 199 889-941
  • [8] Wang L(2002)Non-coercive linear elliptic problems Potential Anal. 17 181-203
  • [9] Byun S(1989)Resolvent setimates in W − 1,p for second order elliptic differential operators in case of mixed boundery conditions Math. Ann. 285 105-113
  • [10] Dong H(1995)The inhomogeneous Dirichlet problem in Lipschitz domains J. Funct. Anal. 130 161-219