Brownian Bridges for Late Time Asymptotics of KPZ Fluctuations in Finite Volume

被引:0
作者
Kirone Mallick
Sylvain Prolhac
机构
[1] Institut de Physique Théorique,
[2] CEA,undefined
[3] CNRS-URA 2306,undefined
[4] Laboratoire de Physique Théorique,undefined
[5] IRSAMC,undefined
[6] UPS,undefined
[7] Université de Toulouse,undefined
来源
Journal of Statistical Physics | 2018年 / 173卷
关键词
TASEP; KPZ fluctuations; Finite volume; Non-intersecting Brownian bridges;
D O I
暂无
中图分类号
学科分类号
摘要
Height fluctuations are studied in the one-dimensional totally asymmetric simple exclusion process with periodic boundaries, with a focus on how late time relaxation towards the non-equilibrium steady state depends on the initial condition. Using a reformulation of the matrix product representation for the dominant eigenstate, the statistics of the height at large scales is expressed, for arbitrary initial conditions, in terms of extremal values of independent standard Brownian bridges. Comparison with earlier exact Bethe ansatz asymptotics leads to explicit conjectures for some conditional probabilities of non-intersecting Brownian bridges with exponentially distributed distances between the endpoints.
引用
收藏
页码:322 / 361
页数:39
相关论文
共 119 条
[21]  
Prolhac S(2010)One-dimensional Kardar–Parisi–Zhang equation: an exact solution and its universality Phys. Rev. Lett. 104 230602-99
[22]  
Fogedby HC(2011)Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions Commun. Pure Appl. Math. 64 466-1929
[23]  
Lazarescu A(2010)Free-energy distribution of the directed polymer at high temperature Europhys. Lett. 90 20002-L81
[24]  
Mallick K(2010)Bethe ansatz derivation of the Tracy–Widom distribution for one-dimensional directed polymers Europhys. Lett. 90 20003-964
[25]  
Lazarescu A(2010)Exact height distributions for the KPZ equation with narrow wedge initial condition Nucl. Phys. B 834 523-1198
[26]  
Derrida B(1992)Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian Phys. Rev. Lett. 68 725-204
[27]  
Golinelli O(1995)Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar–Parisi–Zhang-type growth model Phys. Rev. E 52 3512-280
[28]  
Mallick K(2005)Spectral gap of the totally asymmetric exclusion process at arbitrary filling J. Phys. A 38 1419-979
[29]  
Bertini L(2005)Bethe ansatz solution of the asymmetric exclusion process with open boundaries Phys. Rev. Lett. 95 240601-1277
[30]  
Giacomin G(2013)Work fluctuations for a Brownian particle in a harmonic trap with fluctuating locations Phys. Rev. E 87 022138-256