Brownian Bridges for Late Time Asymptotics of KPZ Fluctuations in Finite Volume

被引:0
作者
Kirone Mallick
Sylvain Prolhac
机构
[1] Institut de Physique Théorique,
[2] CEA,undefined
[3] CNRS-URA 2306,undefined
[4] Laboratoire de Physique Théorique,undefined
[5] IRSAMC,undefined
[6] UPS,undefined
[7] Université de Toulouse,undefined
来源
Journal of Statistical Physics | 2018年 / 173卷
关键词
TASEP; KPZ fluctuations; Finite volume; Non-intersecting Brownian bridges;
D O I
暂无
中图分类号
学科分类号
摘要
Height fluctuations are studied in the one-dimensional totally asymmetric simple exclusion process with periodic boundaries, with a focus on how late time relaxation towards the non-equilibrium steady state depends on the initial condition. Using a reformulation of the matrix product representation for the dominant eigenstate, the statistics of the height at large scales is expressed, for arbitrary initial conditions, in terms of extremal values of independent standard Brownian bridges. Comparison with earlier exact Bethe ansatz asymptotics leads to explicit conjectures for some conditional probabilities of non-intersecting Brownian bridges with exponentially distributed distances between the endpoints.
引用
收藏
页码:322 / 361
页数:39
相关论文
共 119 条
[1]  
Kriecherbauer T(2010)A pedestrian’s view on interacting particle systems, KPZ universality and random matrices J. Phys. A 43 403001-984
[2]  
Krug J(2011)Growing interfaces uncover universal fluctuations behind scale invariance Sci. Rep. 1 34-814
[3]  
Takeuchi KA(2015)The one-dimensional KPZ equation and its universality class J. Stat. Phys. 160 965-892
[4]  
Sano M(2015)A KPZ cocktail-shaken, not stirred J. Stat. Phys. 160 794-99
[5]  
Sasamoto T(1986)Dynamic scaling of growing interfaces Phys. Rev. Lett. 56 889-813
[6]  
Spohn H(2006)Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals Phys. A 369 71-83
[7]  
Quastel J(2007)Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques J. Stat. Mech. 2007 P07007-12705
[8]  
Spohn H(2010)From interacting particle systems to random matrices J. Stat. Mech. 2010 P10016-607
[9]  
Halpin-Healy T(2011)The Kardar–Parisi–Zhang equation and universality class Random Matrices 1 1130001-1046
[10]  
Takeuchi KA(2016)Finite-time fluctuations for the totally asymmetric exclusion process Phys. Rev. Lett. 116 090601-664