ATP-independent contractile proteins from plants

被引:0
作者
Michael Knoblauch
Gundula A. Noll
Torsten Müller
Dirk Prüfer
Ingrid Schneider-Hüther
Dörte Scharner
Aart J. E. van Bel
Winfried S. Peters
机构
[1] Institut für Allgemeine Botanik der Justus Liebig-Universität,
[2] Senckenbergstr. 17-21,undefined
[3] Institut für Biologie,undefined
[4] Humboldt Universität zu Berlin,undefined
[5] Invalidenstr. 42,undefined
[6] Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie,undefined
[7] Bereich Molekularbiologie,undefined
[8] Auf dem Aberg 1,undefined
[9] Arbeitskreis Kinematische Zellforschung,undefined
[10] Biozentrum der Johann Wolfgang Goethe-Universität,undefined
[11] Marie-Curie-Str. 9,undefined
来源
Nature Materials | 2003年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices1,2,3. Mechanically active polymers currently studied include a variety of materials4,5,6,7,8,9. ATP-driven motor proteins, the actuators of living cells10, possess promising characteristics11,12,13, but their dependence on strictly defined chemical environments can be disadvantagous14. Natural proteins that deform reversibly by entropic mechanisms might serve as models for artificial contractile polypeptides with useful functionality15, but they are rare16. Protein bodies from sieve elements of higher plants17,18,19 provide a novel example. sieve elements form microfluidics systems for pressure-driven transport of photo-assimilates throughout the plant20,21,22. Unique protein bodies in the sieve elements of legumes act as cellular stopcocks, by undergoing a Ca2+-dependent conformational switch in which they plug the sieve element23. In living cells, this reaction is probably controlled by Ca2+-transporters in the cell membrane23. Here we report the rapid, reversible, anisotropic and ATP-independent contractility in these protein bodies in vitro. Considering the unique biological function of the legume 'crystalloid' protein bodies and their contractile properties, we suggest to give them the distinctive name forisome ('gate-body'; from the Latin foris, the wing of a gate).
引用
收藏
页码:600 / 603
页数:3
相关论文
共 51 条
  • [1] De Rossi D(1992)Pseudomuscular gel actuators for advanced robotics J. Intel. Mater. Syst. Struct. 3 75-95
  • [2] Suzuki M(1994)Continuum electromechanics of ionic polymeric gels as artificial muscles for robotic applications Smart Mater. Struct. 3 367-372
  • [3] Osada Y(2000)Multilayer hydrogels as muscle-like actuators Adv. Mater. 12 288-291
  • [4] Morasso P(1992)Phase transitions of gels Annu. Rev. Mater. Sci. 22 243-277
  • [5] Shahinpoor M(1998)Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review Smart Mater. Struct. 7 R15-R30
  • [6] Liu Z(2001)Microelectromechanical systems (MEMS): fabrication, design and applications Smart Mater. Struct. 10 1115-1134
  • [7] Calvert P(2002)Pneumatic carbon nanotube actuators Adv. Mater. 14 1728-1732
  • [8] Li Y(2002)Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization Adv. Funct. Mater. 12 611-620
  • [9] Tanaka T(2000)Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system Nanotechnology 11 52-56
  • [10] Shahinpoor M(2001)Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces Nano Lett. 1 235-239