Determining Parameters of Fractional–Exponential Heredity Kernels of Nonlinear Viscoelastic Materials

被引:10
作者
Golub V.P. [1 ]
Pavlyuk Y.V. [1 ]
Fernati P.V. [1 ]
机构
[1] S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3, Nesterov St., Kyiv
关键词
Abel’s kernel; cubic theory; experimental approval; fractional–exponential kernel; nonlinear viscoelasticity; similarity of creep curves; similarity of isochronous creep diagrams;
D O I
10.1007/s10778-017-0826-2
中图分类号
学科分类号
摘要
The problem of determining the parameters of fractional–exponential heredity kernels of nonlinear viscoelastic materials is solved. The methods for determining the parameters that are used in the cubic theory of viscoelasticity and the nonlinear theories based on the conditions of similarity of primary creep curves and isochronous creep diagrams are analyzed. The parameters of fractional–exponential heredity kernels are determined and experimentally validated for the oriented polypropylene, FM3001 and FM10001 nylon fibers, microplastics, TC 8/3-250 glass-reinforced plastic, SWAM glass-reinforced plastic, and contact molding glass-reinforced plastic. © 2017, Springer Science+Business Media, LLC.
引用
收藏
页码:419 / 433
页数:14
相关论文
共 25 条
[1]  
Ilyushin A.A., Pobedrya B.E., Basics of Mathematical Theory of Thermoviscoelasticity [in Russian], (1970)
[2]  
Kershtein I.M., Stepanov R.D., Ogibalov P.M., Zone of linearity of stress-related properties of contact molding glass-reinforced plastic, Mekh. Polim., 3, pp. 404-410, (1970)
[3]  
Koltunov M.A., Creep and Relaxation [in Russian], (1976)
[4]  
Martirosyan M.M., On short-term creep of SWAM glass-reinforced plastic, Mekh. Polym., 2, pp. 47-54, (1965)
[5]  
Rabotnov Y.N., Papernik A.K., Zvonov E.N., Tables of Fractional–Exponential Function of Negative Parameters and its Integral [in Russian], (1969)
[6]  
Rabotnov Y.N., Papernik A.K., Stepanychev E.I., Describing creep of composite materials in tension and compression, Mekh. Polym., 5, pp. 779-785, (1973)
[7]  
Rozovskii M.I., Creep and delayed fracture of materials, Zhur. Tekh. Fiz., 21, 11, pp. 1311-1318, (1951)
[8]  
Sokolov E.A., Maksimov R.D., Possibility of anticipating creep of polymeric fiber-reinforced plastic based on component properties, Mekh. Polym., 6, pp. 1005-1012, (1978)
[9]  
Christensen R.M., Theory of Viscoelasticity, (1971)
[10]  
Findley W.N., Lai J.S., Onaran K., Creep and Relaxation of Nonlinear Viscoelastic Materials, (1976)