Fractal solutions of dispersive partial differential equations on the torus

被引:0
作者
M. B. Erdoğan
G. Shakan
机构
[1] University of Illinois,Department of Mathematics
来源
Selecta Mathematica | 2019年 / 25卷
关键词
35Q55; 11L03;
D O I
暂无
中图分类号
学科分类号
摘要
We use exponential sums to study the fractal dimension of the graphs of solutions to linear dispersive PDE. Our techniques apply to Schrödinger, Airy, Boussinesq, the fractional Schrödinger, and the gravity and gravity–capillary water wave equations. We also discuss applications to certain nonlinear dispersive equations. In particular, we obtain bounds for the dimension of the graph of the solution to cubic nonlinear Schrödinger and Korteweg–de Vries equations along oblique lines in space–time.
引用
收藏
相关论文
共 34 条
  • [1] Berry MV(1996)Quantum fractals in boxes J. Phys. A Math. Gen. 29 6617-6629
  • [2] Berry MV(1996)Integer, fractional and fractal Talbot effects J. Mod. Opt. 43 2139-2164
  • [3] Klein S(1980)On the Weierstrass–Mandelbrot fractal function Proc. R. Soc. Lond. A 370 459-484
  • [4] Berry MV(2001)Quantum carpets, carpets of light Phys. World 14 39-44
  • [5] Lewis ZV(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations Geom. Funct. Anal. 3 107-156
  • [6] Berry MV(2017)Decoupling, exponential sums and the Riemann zeta function J. Am. Math. Soc. 30 205-224
  • [7] Marzoli I(2016)Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three Ann. Math. (2) 184 633-682
  • [8] Schleich W(1999)Differentiability and dimension of some fractal Fourier series Adv. Math. 142 335-354
  • [9] Bourgain J(2012)Dispersion of discontinuous periodic waves Proc. R. Soc. Lond. A 469 20120407-1008
  • [10] Bourgain J(2014)Numerical simulation of nonlinear dispersive quantization Discrete Contin. Dyn. Syst. 34 991-564