A Formality Theorem for Poisson Manifolds

被引:0
作者
Gregory Ginot
Gilles Halbout
机构
[1] Université Louis Pasteur,Institut de Recherche Mathématique Avancée
[2] CNRS,undefined
来源
Letters in Mathematical Physics | 2003年 / 66卷
关键词
deformation quantization; homological methods; homotopy formulas; star-product;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a differential manifold. Using different methods, Kontsevich and Tamarkin have proved a formality theorem, which states the existence of a Lie homomorphism 'up to homotopy' between the Lie algebra of Hochschild cochains on C∞(M) and its cohomology (Γ(M, ΛTM), [−, −]S). Suppose M is a Poisson manifold equipped with a Poisson tensor π; then one can deduce from this theorem the existence of a star product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\star$$ \end{document} on C∞(M). In this Letter we prove that the formality theorem can be extended to a Lie (and even Gerstenhaber) homomorphism 'up to homotopy' between the Lie (resp. Gerstenhaber 'up to homtoptopy') algebra of Hochschild cochains on the deformed algebra (C∞(M), *) and the Poisson complex (Γ(M, ΛTM), [π, −]S). We will first recall Tamarkin's proof and see how the formality maps can be deduced from Etingof and Kazhdan's theorem using only homotopies formulas. The formality theorem for Poisson manifolds will then follow.
引用
收藏
页码:37 / 64
页数:27
相关论文
共 34 条
[1]  
Baues J. H.(1981)The double bar and cobar constructions Compositio Math. 43 331-341
[2]  
Bayen F.(1975)Quantum mechanics as a deformation of classical mechanics Lett. Math. Phys. 1 521-530
[3]  
Flato M.(1977)Deformation theory and quantization, I and II Ann. Phys. 111 61-151
[4]  
Fronsdal C.(1995)A homotopy formula for the Hochschild cohomology Compositio Math. 96 99-109
[5]  
Lichnerowicz A.(1996)Quantization of Lie bialgebras. I Selecta Math.(N.S.) 2 1-41
[6]  
Sternheimer D.(1998)Quantization of Lie bialgebras. II, III Selecta Math. (N.S.) 4 213-231
[7]  
Bayen F.(1995)Homotopy Internat. Math. Res. Notices 3 141-153
[8]  
Flato M.(1994)-algebras and moduli space operad Duke Math. J. 76 203-272
[9]  
Fronsdal C.(2001)Koszul duality for operads Compositio Math. 126 123-145
[10]  
Lichnerowicz A.(1962)Formule d'homotopie entre les complexes de Hochschild et de de Rham Trans. Amer. Math. Soc. 102 383-408