Penning micro-trap for quantum computing

被引:0
|
作者
Shreyans Jain
Tobias Sägesser
Pavel Hrmo
Celeste Torkzaban
Martin Stadler
Robin Oswald
Chris Axline
Amado Bautista-Salvador
Christian Ospelkaus
Daniel Kienzler
Jonathan Home
机构
[1] ETH Zürich,Department of Physics
[2] ETH Zürich,Quantum Center
[3] Leibniz Universität Hannover,Institut für Quantenoptik
[4] Physikalisch-Technische Bundesanstalt,undefined
来源
Nature | 2024年 / 627卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times1–3. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages4, managing power dissipation5 and restricting transport and placement of ions6. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field. We demonstrate full quantum control of an ion in this setting, as well as the ability to transport the ion arbitrarily in the trapping plane above the chip. This unique feature of the Penning micro-trap approach opens up a modification of the quantum charge-coupled device architecture with improved connectivity and flexibility, facilitating the realization of large-scale trapped-ion quantum computing, quantum simulation and quantum sensing.
引用
收藏
页码:510 / 514
页数:4
相关论文
共 50 条
  • [1] Penning micro-trap for quantum computing
    Jain, Shreyans
    Sagesser, Tobias
    Hrmo, Pavel
    Torkzaban, Celeste
    Stadler, Martin
    Oswald, Robin
    Axline, Chris
    Bautista-Salvador, Amado
    Ospelkaus, Christian
    Kienzler, Daniel
    Home, Jonathan
    NATURE, 2024, 627 (8004) : S29 - S31
  • [2] Ultra-Fast Diffractive Optical Micro-Trap Arrays for Neutral Atom Quantum Computing
    Kemme, S. A.
    Brady, G. R.
    Ellis, A. R.
    Wendt, J. R.
    Peters, D. W.
    Biedermann, G. W.
    Carter, T. R.
    Samora, S.
    Isaacs, J. A.
    Ivanov, V. V.
    Saffman, M.
    ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS V, 2012, 8249
  • [3] Stability of an aqueous quadrupole micro-trap
    Park, Jae Hyun
    Krstic, Predrag S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (16)
  • [4] A magnetic particle micro-trap for large trapping surfaces
    Gooneratne, Chinthaka P.
    Liang, Cai
    Giouroudi, Ioanna
    Kosel, Juergen
    EUROSENSORS XXV, 2011, 25
  • [5] The quantum theory of the Penning trap
    Crimin, F.
    Garraway, B. M.
    Verdu, J.
    JOURNAL OF MODERN OPTICS, 2018, 65 (04) : 427 - 440
  • [6] Scalable Arrays of Micro-Penning Traps for Quantum Computing and Simulation
    Jain, S.
    Alonso, J.
    Grau, M.
    Home, J. P.
    PHYSICAL REVIEW X, 2020, 10 (03):
  • [7] THE MICRO-TRAP - AN ALTERNATIVE TO CRYOFOCUSING IN CAPILLARY GAS-CHROMATOGRAPHY
    FRANK, W
    FRANK, H
    CHROMATOGRAPHIA, 1990, 29 (11-12) : 571 - 574
  • [8] Motional quantum metrology in a Penning trap
    Cerrillo, Javier
    Rodriguez, Daniel
    EPL, 2021, 134 (03)
  • [9] The simulation of moderated positrons behavior in a micro-trap with long aspect ratios
    Xu, J.
    Weber, M. H.
    Lynn, K. G.
    PHYSICS WITH MANY POSITRONS, 2010, 174 : 575 - 590
  • [10] Microfabricated Penning trap for quantum computation and simulation
    Hrmo, Pavel
    Jain, Shreyans
    Sagesser, Tobias
    Kienzler, Daniel
    Home, Jonathan
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 807 - 808