Multi-dimensional Fourier Transforms, Lebesgue Points and Strong Summability

被引:0
|
作者
Ferenc Weisz
机构
[1] Eötvös L. University,Department of Numerical Analysis
来源
关键词
Fourier transforms; Fejér summability; -summability; Marcinkiewicz summability; Lebesgue points; strong summability; Primary 42B08; Secondary 42A38; 42A24; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
A general summability method of multi-dimensional Fourier transforms, the so called θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-summability is investigated. Under some conditions on θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document} we show that the Marcinkiewicz-θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-means of a function f∈W(L1,ℓ∞)(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in W(L_1,\ell_\infty)({\mathbb{R}}^d)}$$\end{document} converge to f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}$$\end{document} at each modified strong Lebesgue point. The same holds for a weaker version of Lebesgue points, for the so called modified Lebesgue points of f∈W(Lp,ℓ∞)(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in W(L_p,\ell_\infty)({\mathbb{R}}^d)}$$\end{document}, whenever 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 < p < \infty}$$\end{document}. As an application we generalize the classical one-dimensional strong summability results of Hardy and Littlewood, Marcinkiewicz, Zygmund and Gabisoniya for f∈W(L1,ℓ∞)(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in W(L_1,\ell_\infty)({\mathbb{R}})}$$\end{document} and for strong θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-summability.
引用
收藏
页码:3557 / 3587
页数:30
相关论文
共 50 条