Simulation of a Large-Eddy-Break-up Device (LEBU) in a Moderate Reynolds Number Turbulent Boundary Layer

被引:0
作者
Cheng Chin
Ramis Örlü
Jason Monty
Nicholas Hutchins
Andrew Ooi
Philipp Schlatter
机构
[1] University of Melbourne,Department of Mechanical Engineering
[2] Royal Institute of Technology,Linné FLOW Centre, KTH Mechanics
来源
Flow, Turbulence and Combustion | 2017年 / 98卷
关键词
Boundary layer; Large eddy simulation; Wall turbulence; Large-eddy-break-up device; Drag reduction;
D O I
暂无
中图分类号
学科分类号
摘要
A well-resolved large eddy simulation (LES) of a large-eddy break-up (LEBU) device in a spatially evolving turbulent boundary layer is performed with, Reynolds number, based on free-stream velocity and momentum-loss thickness, of Reθ ≈ 4300. The implementation of the LEBU is via an immersed boundary method. The LEBU is positioned at a wall-normal distance of 0.8 δ (δ denoting the local boundary layer thickness at the location of the LEBU) from the wall. The LEBU acts to delay the growth of the turbulent boundary layer and produces global skin friction reduction beyond 180δ downstream of the LEBU, with a peak local skin friction reduction of approximately 12 %. However, no net drag reduction is found when accounting for the device drag of the LEBU in accordance with the towing tank experiments by Sahlin et al. (Phys. Fluids 31, 2814, 1988). Further investigation is performed on the interactions of high and low momentum bulges with the LEBU and the corresponding output is analysed, showing a ‘break-up’ of these large momentum bulges downstream of the LEBU. In addition, results from the spanwise energy spectra show consistent reduction in energy at spanwise length scales for λz+>1000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{z}^{+} > 1000$\end{document} independent of streamwise and wall-normal location when compared to the corresponding turbulent boundary layer without LEBU.
引用
收藏
页码:445 / 460
页数:15
相关论文
共 57 条
[1]  
Kline SJ(1967)undefined J. Fluid Mech. 30 741-undefined
[2]  
Reynolds WC(1977)undefined Phys. Fluids 20 243-undefined
[3]  
Shrub FA(1988)undefined J. Fluid Mech. 191 389-undefined
[4]  
Rundstadler PW(1989)undefined Appl. Sci. Res. 46 255-undefined
[5]  
Brown GL(1988)undefined Phys. Fluids 31 2814-undefined
[6]  
Thomas ASW(2010)undefined Thermophys. Aeromech. 17 249-undefined
[7]  
Savill AM(2011)undefined J. Mar. Sci. Technol. 16 390-undefined
[8]  
Mumford JC(2007)undefined J. Fluid Mech. 579 1-undefined
[9]  
Walsh M(2009)undefined J. Fluid Mech. 628 311-undefined
[10]  
Anders JJB(2006)undefined Int. J. HeatFluid Flow 27 902-undefined